STUDY REPORT W&AR-02 PROJECT OPERATIONS/WATER BALANCE MODEL

ATTACHMENT B

MODEL DESCRIPTION AND USER'S GUIDE

Secti	on No.		Description P	age No.
1.0	INTI	RODUC	ΓΙΟΝ	1-1
2.0			IICAL RANGE OF MODEL AND UNDERLYING SYSTEM	
3.0	DON	PEDRO) PROJECT AND LA GRANGE DIVERSION DAM	3-1
	3.1	Reserv	voir Inflow	3-1
	3.2	MID a	nd TID Canal Demand	3-1
	3.3	Requir	red FERC flows at La Grange Bridge	3-3
	3.4	Reserv	voir and Release Management	3-4
	3.5	Water	Supply Factor	3-5
	3.6	Power	Generation	3-6
	3.7	User-I	nterface Adjustments	3-6
4.0	CITY	Y AND C	COUNTY OF SAN FRANCISCO SYSTEM	4-1
	4.1	Hetch	Hetchy Reservoir	4-2
	4.2	Lake I	.loyd	4-3
	4.3	Lake E	Eleanor	4-3
	4.4	Don P	edro Inflow	4-4
	4.5	Water	Bank Account	4-4
	4.6	User I	nterface Adjustments	4-4
5.0	MOI	DEL STH	RUCTURE	5-6
	5.1	UserIn	put Worksheet	5-7
		5.1.1	Contents Description and Study Name	
		5.1.2	Section 1: Minimum Flow Requirements at La Grange Bridge	5-7
		5.1.3	Section 2: Canal Diversions of Modesto Irrigation District and Turlock Irrigation District	
		5.1.4	Section 3: Supplemental Releases of City and County of Sar Francisco	
		5.1.5	Section 4: San Joaquin Pipeline Diversions of City and County of San Francisco	
	5.2	Water	BankRel Worksheet	5-16
	5.3	Contro	ol Worksheet	5-18
		5.3.1	Contents Description	5-20
		5.3.2	Section 1: Don Pedro Reservoir and District Facilities -Reservoir Management, Preferred Storage Target and Drawdown, Modesto Flood Control Objective, Snowmelt Runoff, and Storage	e e
		5.3.3	Constraints FERC Minimum Flows	
		5.5.5		5-20

TABLEOF CONTENTS

	5.3.4	Test Case District Canal Demands	5-21
	5.3.5	Don Pedro Water Supply Factor	5-21
	5.3.6	Section 2: City and County of San Francisco Facilities - Hetch Hetchy Reservoir	5-25
	5.3.7	Lake Lloyd	5-25
	5.3.8	Lake Eleanor	5-26
	5.3.9	CCSF Water Supply Parameters	5-27
	5.3.10	Section 3: Don Pedro Reservoir and CCSF Elevation/Storage/Area and Evaporation Factors	5-31
	5.3.11	Section 4: Don Pedro Reservoir Flood Control Reservation and Discretionary Target	5-31
5.4	Output	Worksheet	5-34
5.5	DSSA	nyGroup Worksheet	5-37
5.6	DSSM	onthTable Worksheet	5-38
	5.6.1	Standardized Tables	5-39
	5.6.2	Standardized Graphs	5-44
5.7	Switch	es Worksheet	5-49
5.8	XXGro	oup Worksheets	5-49
5.9	Model	YearofDaily Worksheet	5-52
5.10	Model	AnyGroup Worksheet	5-53
5.11	Model	MonthTable Worksheet	5-55
5.12	DonPe	dro Worksheet	5-57
	5.12.1	Don Pedro Reservoir Release Demands.	5-57
	5.12.2	Reservoir Evaporation / Initial Storage Computation and Encroachment Release	5-57
	5.12.3	Snow-melt Management	5-58
	5.12.4	Modesto Flow Objective, Don Pedro Reservoir, and Tuolumne River Release	5-59
	5.12.5	Don Pedro Project Generation and River Flows	5-60
	5.12.6	Don Pedro Inflow Components	5-60
5.13	SFHete	chHetchy Worksheet	5-61
		Hetch Hetchy Release Demands / Reservoir Evaporation / Initial Storage Computation and Encroachment Release	
	5.13.2	Supplemental Releases and Final Reservoir and Release Computation	5-62
	5.13.3	Snow-melt Management	5-63
5.14	SFLloy	yd Worksheet	5-64
	5.14.1	Lake Lloyd Release Demands, Initial Storage Computation and Encroachment Release	5-64

	5.14.2 Supplemental Releases, Lake Eleanor Transfers and Final Reservoir and Release Computation
	5.14.3 Snow-melt Management
5.15	SFEleanor Worksheet
	5.15.1 Lake Eleanor Release Demands, Initial Storage Computation and Encroachment Release
	5.15.2 Lake Eleanor Transfers and Final Reservoir and Release Computation
	5.15.3 Snow-melt Management
5.16	SFWaterBank Worksheet
	5.16.1 CCSF Water Bank Account Balance Accounting, CCSF La Grange Flow Responsibility and Test Case Supplemental Releases
	5.16.2 User Specified Table of Supplemental Releases and Reservoir Status Computation
5.17	LaGrangeSchedule Worksheet
	5.17.1 Minimum Flow Requirement Options
	5.17.2 April – May Daily Parsing of Flow Requirements
	5.17.3 Computation of 1995 FERC Minimum Flow Requirement
	5.17.4 CCSF La Grange Release Responsibility
5.18	DailyCanalsCompute Worksheet
	5.18.1 Projected Demand for Applied Water and Don Pedro Water Supply Factor
	5.18.2 District Canal Demand Calculation
	5.18.3 District Canal Operation Assumptions
5.19	DailyCanals Worksheet
	5.19.1 Model (scenario) Canal Demands
	5.19.2 Test Case and Alternative Canal Diversions
5.20	DPWSF Worksheet
5.21	CCSF Worksheet
	5.21.1 San Joaquin Pipeline Diversions
	5.21.2 CCSF System Storage and Action Levels
	5.21.3 Hetch Hetchy Reservoir Control
	5.21.4 Lake Lloyd Control
	5.21.5 Lake Eleanor Control
5.22	Hydrology Worksheet
5.23	602020 Worksheet
	MPLES OF MODEL USE
6.1	Example 1
6.2	Example 2

6.0

6.3	Example 3	6-3
6.4	Additional Example	6-4

List of Figures

Figure No.	Description Page N	0.						
Figure 2.0-1.	Tuolumne River Daily Operations Model	-2						
Figure 3.2-1.	District Canal Demand Parameters							
Figure 3.3-1.	User-specified Distribution of April and May FERC Flow Requirements	-4						
Figure 3.4-1.	Reservoir Storage Guidance							
Figure 4.0-1.	City and County of San Francisco System	-1						
Figure 5.1-1.	Contents Description and Study Name5	-9						
Figure 5.1-2.	Minimum Flow Requirements at La Grange Bridge	-9						
Figure 5.1-3.	Canal Diversions of Modesto Irrigation District	12						
Figure 5.1-4.	Canal Diversions of Turlock Irrigation District	13						
Figure 5.1-5.	Supplemental Releases of City and County of San Francisco	14						
Figure 5.1-6.	San Joaquin Pipeline Diversions of City and County of San Francisco 5-1	15						
Figure 5.2-1.	WaterBankRel Worksheet 5-1	17						
Figure 5.2-2.	Example 1: A Reservoir Empties and the Model Crashes	18						
Figure 5.2-3.	Example 2: Water Bank Balance is Negative	18						
Figure 5.3-1.	Contents Description	22						
Figure 5.3-2.	Section 1: Don Pedro Reservoir and District Facilities -Reservoir Management, Preferred Storage Target and Drawdown, Modesto Flood Control Objective, Snowmelt Runoff, and Storage Constraints	22						
Figure 5.3-3.	FERC Minimum Flows							
Figure 5.3-4.	Test Case District Canal Demands	24						
Figure 5.3-5.	Don Pedro Water Supply Factor5-2	24						
Figure 5.3-6.	Hetch Hetchy Reservoir	28						
Figure 5.3-7.	Lake Lloyd5-2	29						
Figure 5.3-8.	Lake Eleanor	30						
Figure 5.3-9.	CCSF Water Supply Parameters	30						
Figure 5.3-10.	Don Pedro Reservoir and CCSF Reservoir Characteristics	32						
Figure 5.3-11.	Don Pedro Reservoir Flood Control and Discretionary Target	33						
Figure 5.4-1.	Sample Parameters Listed in Output Worksheet	34						
Figure 5.5-1.	DSSAnyGroup Worksheet Input Interface	37						
Figure 5.5-2.	DSSAnyGroup Worksheet Plotting5-3	38						
Figure 5.6-1.	DSSMonthTable Worksheet Input Interface	39						
Figure 5.6-2.	Chronological Illustration of Parameter	15						
Figure 5.6-3.	Annual Parameter Graphic – Tagged to Water Year Table	16						

Figure 5.6-4.	Annual Parameter Graphic – Tagged to Chronological Sequence Year Table.	. 5-46
Figure 5.6-5.	Annual Parameter Graphic–Tagged to Rank-ordering of Results by	c 47
	Year Wetness.	
Figure 5.6-6.	Annual Parameter Graphic – Comparison of 2 Tables.	
Figure 5.6-7.	Comparison of 4 Tables.	
Figure 5.7-1.	Switches Worksheet Input Interface.	
Figure 5.8-1.	DPGroup Worksheet Input Interface.	. 5-51
Figure 5.8-2.	DPGroup Worksheet Plotting.	
Figure 5.9-1.	DPGroup Worksheet Input Interface.	. 5-52
Figure 5.9-2.	ModelYearofDaily Output Table (calendar year)	. 5-53
Figure 5.10-1.	ModelAnyGroup Worksheet Input Interface.	. 5-54
Figure 5.10-2.	ModelAnyGroup Worksheet Plotting.	. 5-55
Figure 5.11-1.	ModelMonthTable Worksheet Input Interface.	. 5-56
Figure 5.12-1.	Don Pedro Reservoir Release Demands.	. 5-57
Figure 5.12-2.	Reservoir Evaporation/Initial Storage Computation and Encroachment	5 50
5 10 0	Release.	
Figure 5.12-3.	Snow-melt Management.	. 5-59
Figure 5.12-4.	Modesto Flow Objective, Don Pedro Reservoir, and Tuolumne River Release	. 5-59
Figure 5.12-5.	Don Pedro Project Generation and River Flows	. 5-60
Figure 5.12-6.	Don Pedro Reservoir Inflow Components	. 5-61
Figure 5.13-1.	Reservoir Evaporation/Initial Storage Computation and Encroachment Release.	. 5-62
Figure 5.13-2.	Supplemental Release, Reservoir Storage and Release.	. 5-63
Figure 5.13-3.	Snow-melt Management.	. 5-64
Figure 5.14-1.	Reservoir Evaporation/Initial Storage Computation and Encroachment Release.	. 5-65
Figure 5.14-2.	Supplemental Releases, Lake Eleanor Transfers and Final Reservoir	
	Operation	
Figure 5.14-3.	Snow-melt Management.	. 5-67
Figure 5.15-1.	Reservoir Evaporation/Initial Storage Computation and Encroachment Release.	. 5-68
Figure 5.15-2.	Lake Eleanor Transfers and Final Reservoir Operation.	. 5-69
Figure 5.15-3.	Snow-melt Management.	. 5-70
Figure 5.16-1.	CCSF Water Bank Balance Accounting.	. 5-71
Figure 5.16-2.	CCSF Supplemental Release.	. 5-72
Figure 5.16-3.	Example 1: A Reservoir Empties and the Model Crashes	. 5-73
Figure 5.16-4.	Example 2: Water Bank is Negative.	
Figure 5.17-1.	Daily Parsing of Minimum FERC Flow Requirement.	. 5-75

Figure 5.17-2.	April-May Daily Parsing of Minimum FERC Flow Requirement	5-75
Figure 5.17-3.	1995 FERC Minimum Flow Requirement	5-76
Figure 5.17-4.	CCSF La Grange Release Responsibility.	5-76
Figure 5.18-1.	Projected Demand for Applied Water and Don Pedro Water Supply	
	Factor.	5-78
Figure 5.18-2.	District Canal Demand Components - MID.	5-78
Figure 5.18-3.	District Canal Demand Components - TID.	5-79
Figure 5.18-4.	Canal Demand and Operation Components for MID.	5-79
Figure 5.18-5.	Canal Demand and Operation Components for TID.	5-80
Figure 5.19-1.	District Canal Demands.	5-81
Figure 5.19-2.	Test Case and Alternative Canal Diversions.	5-81
Figure 5.19-3.	Assemblage of Canal Diversions.	5-82
Figure 5.20-1.	Don Pedro Water Supply Factor Computation.	5-83
Figure 5.21-1.	CCSF San Joaquin Pipeline Diversions and Assemblage of Data	5-83
Figure 5.21-2.	CCSF System Storage and Action Levels.	5-84
Figure 5.21-3.	Hetch Hetchy Reservoir Controls.	5-85
Figure 5.21-4.	Lake Lloyd Controls.	5-85
Figure 5.21-5.	Lake Eleanor Controls.	5-86

List of Tables

Table No.	Description	Page No.
Table 3.2-1.	Canal Demand and Operation Components for MID.	
Table 3.2-2.	Canal Demand and Operation Components for TID.	
Table 5.0-1.	Model Worksheets.	5-6
Table 5.4-1.	Columnar Description for Parameters Listed in Output Worksheet	5-35
Table 5.6-1.	Table 1 Form (units of volume).	5-40
Table 5.6-2.	Table 1 Form (units of flow)	5-41
Table 5.6-3.	Table 1a Form (chronological).	5-42
Table 5.6-4.	Table 1a Form (year type ranking, descending order of wetness)	5-43

The Turlock Irrigation District (TID) and Modesto Irrigation District (MID) (collectively, the Districts) have developed a computerized Project Operations Model (Model) to assist in evaluating the relicensing of the Don Pedro Project (Project) (FERC Project 2299). On November 22, 2011, in accordance with the Integrated Licensing Process schedule for the relicensing of the Don Pedro Project, the Districts filed their Revised Study Plan containing 35 proposed studies with the Federal Energy Regulatory Commission (FERC) and relicensing participants. On December 22, 2011, FERC issued its Study Plan Determination approving, with modifications, the proposed studies, including Study Plan W&AR-2: Project Operations /Water Balance Model Study Plan. Consistent with the FERC-approved study plan, the objective of the Model is to provide a tool to compare current and potential future operations of the Project. Due to the fact that the geographic scope of the Model extends from the City and County of San Francisco's (CCSF) Hetch Hetchy system in the upper part of the watershed to the confluence of the Tuolumne and San Joaquin rivers, the Model is now entitled the Tuolumne River Daily Operations Model.

As fully described in this User's Guide, and consistent with the FERC-approved study plan, the Model includes numerous user-controlled parameters that allow the simulation of alternative Project operations, such as alternative flow regimes for the lower Tuolumne River. The Model performs a simulation of Project operations for a sequential period of years that covers a range of historical hydrologic conditions. The period of hydrologic record selected for the Model is Water Year 1971 through Water Year 2009, which includes extreme years of hydrology (1977 dry and 1983 wet) and multi-year periods of challenging water supply conditions such as 1976-1977, 1987-1992, and 2001-2004. The purpose of this User's Guide is to describe the structure of the Model, the interfaces available for operation of the Model, and methods available for the reviewing Model results. Procedures for development of input files for running alternative future operations are also described and illustrated. The data presented in this document are referenced to a "Test-Case" simulation of operations and are being incorporated for illustrative purposes.

As is the case with any model, the Tuolumne River Daily Operations Model is only a depiction of project operations, and is limited to representing CCSF and District operations to the extent that their operations can be described systematically by various equations and algorithms. Actual project operations may vary from those depicted by the Model due to circumstantial conditions of hydrology and weather, facility operation, and human intervention. The FERC-approved study plan has identified a number of user-controlled variables for running alternatives. The fact that the Model provides these user-controlled inputs is not an indication that either the Districts or CCSF endorse or support any specific alternative developed by manipulating these inputs.

2.0 GEOGRAPHICAL RANGE OF MODEL AND UNDERLYING SYSTEM OPERATION

As mentioned above, the geographic scope of the Model extends for CCSF's Hetch Hetchy system to the confluence of the Tuolumne and San Joaquin Rivers, as generally depicted in Figure 2.0-1. The Model comprises two primary subsystems -- the Districts' Don Pedro Project and CCSF's Hetch Hetchy Project, which are independently owned and operated by the respective parties. The Don Pedro Project includes the Don Pedro Reservoir and powerhouse. It provides water storage and flood control benefits. Water that flows into Don Pedro Reservoir is either stored or passed through to the lower Tuolumne River. Included in the model is the projected diversion of water at La Grange to serve irrigation and M&I customers of MID and TID. A model "node" (calculation point) is provided at the Districts' La Grange diversion dam, where the Model simulates flows to the Modesto Canal, the Turlock Canal, and the Tuolumne River below the La Grange diversion dam. The CCSF System is modeled as three physical reservoirs (Hetch Hetchy Reservoir, Lake Lloyd and Lake Eleanor), the San Joaquin Pipeline (SJPL), and an accounting for the Don Pedro Water Bank Account. All releases from the CCSF System, except those diverted to the SJPL enter Don Pedro Reservoir. A node is also provided to represent the location of the existing USGS stream flow gage entitled "Tuolumne River at Modesto" (Modesto). Additional nodes may be established above and/or below the Modesto gage node depending on the results of ongoing lower Tuolumne River accretion flow measurements.

The Model components operate with systematic algorithms that attempt to mimic operational decisions for reservoir and facility operations. For each subsystem, certain operation constraints can be user-controlled consistent with the FERC-approved study plan. Within each subsystem, each reservoir has the same underlying operation protocol. A daily mass balance is performed: change in reservoir storage = inflow, minus outflow (releases), minus reservoir losses. If the calculation results in a reservoir storage that is in excess of preferred/maximum capacity, an additional release is made.

Minimum releases for each modeled reservoir are in accordance with current stream flow requirements and diversion requirements. Each reservoir assumes a common "hold-unless-need-to-release" protocol, except as conditioned by minimum stream release requirements, diversions, preferred/maximum storage, snowmelt management releases, or other specified releases. In essence, each reservoir operates for its own "reservoir conservation" goal and retains storage as much as possible, only drawn down as needed to meet release requirements, diversions, or to achieve reservoir or flow management goals such as flood control or, in some cases hydropower.

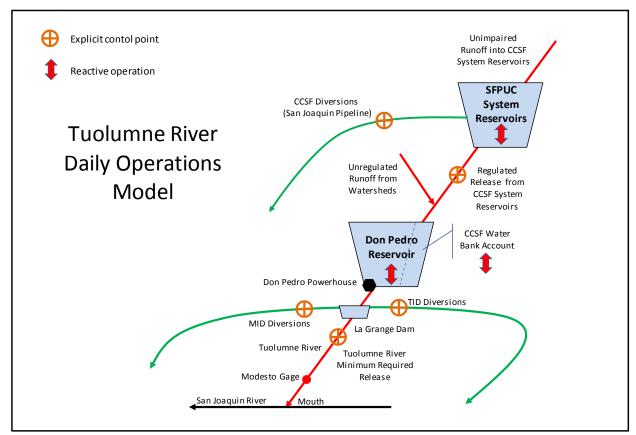


Figure 2.0-1. Tuolumne River Daily Operations Model.

3.0 DON PEDRO PROJECT AND LA GRANGE DIVERSION DAM

The Don Pedro Project and the La Grange diversion dam operations are modeled to represent current operations for irrigation and municipal water deliveries, fishery and instream flow requirements and flood control. Hydropower production is a function of the releases made for these other purposes. The following elements of hydrology and objectives guide the modeled operation.

3.1 Reservoir Inflow

Inflow to Don Pedro Reservoir is modeled as two components: 1) a fluctuating unregulated inflow to Don Pedro Reservoir, and 2) the regulated releases (regulated Don Pedro Reservoir inflow) from the CCSF System. The inflow will reflect a daily fluctuating pattern which is mostly associated with the unregulated component of runoff in the basin, which is approximately 40 percent of the total runoff in the basin. The unregulated component of inflow to Don Pedro Reservoir remains the same among all operation simulations. The regulated inflow to Don Pedro is based on a projected level of development and operation for the CCSF System. This component of Don Pedro Reservoir inflow may change among operation simulations due to changed assumptions for CCSF System demands and level of development, or due to user-controlled parameters.

3.2 MID and TID Canal Demand

Figure 3.2-1 is a schematic of the parameters used by modeling to create each District's diversion demand at La Grange diversion dam.

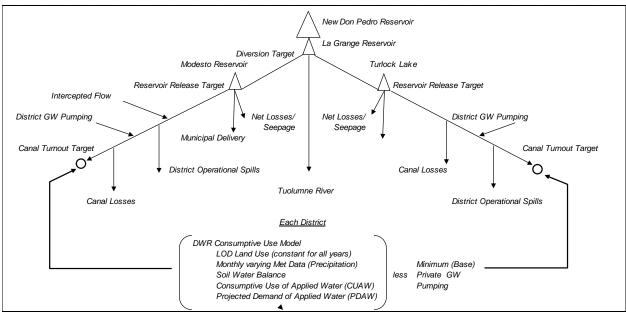


Figure 3.2-1. District Canal Demand Parameters.

Due to changing land use and cropping patterns, groundwater use and irrigation and canal management practices throughout history, the historical record of recorded diversions does not provide a consistent definition of water diversion needs. Similar to depicting inflow, the Model uses a projected level of development for establishing irrigation and canal diversion demand.

The canal diversions are assumed to be driven by three components: 1) a fluctuating customer component, the (P)rojected (D)emand of (A)pplied (W)ater (PDAW) that varies year to year and month to month, 2) a relatively constant depiction of District and land owner system losses and efficiencies, and 3) a water supply availability factor based on Don Pedro Reservoir storage and inflow.

The PDAW is developed through use of the California Department of Water Resources (CDWR) consumptive use model, and considers precipitation, ET rates, soil moisture criteria, rooting depth, irrigation indicators, and other factors along with land use to estimate the CUAW on a monthly basis. Monthly water use varies based on input ET rates, which are constant each year. CUAW will only vary each year based on variation in precipitation. The PDAW has been adjusted to reflect other routine irrigation practices not identifiable with strict ET, such as pre-irrigation. The estimate of monthly PDAW is distributed daily based on the historical (2009-2011) distribution of canal diversions within months.

In addition to the PDAW requirement, several canal operation and management components are incorporated into the projected diversion demand. The following tables provide the monthly estimates used for each component, Table 3.2-1 for MID and Table 3.2-2 for TID.

The turnout delivery factor is unique to each District and represents a modeling mechanism to adjust the PDAW for irrigation practices that are not included in the estimation of the CUAW, such as irrigation that provides for groundwater recharge.

Modesto Irrig	ation District									
			Canal	Canal	System			Modesto Res	Municipal	
	Turnout	Nominal	Operational	Operational	Losses		Nominal	and Upper	Delivery	Modesto Res
	Delivery	Private GW	Spills	Spills	below	Intercepted	MID GW	Canal	from	Target
	Factor	Pumping	Critical	Non-crit	Modesto Res	Flows	Pumping	Losses/Div	Modesto Res	Storage
Month	%	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF
January	35	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	17.0
February	35	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	18.0
March	65	1.0	1.0	3.0	0.6	0.9	1.0	2.0	2.7	18.0
April	70	2.0	3.0	6.0	0.6	0.9	2.3	2.9	2.7	19.0
May	85	3.0	4.0	6.5	0.6	1.2	2.3	3.9	3.0	20.0
June	85	4.0	3.5	6.5	0.6	1.0	2.3	4.3	3.2	20.0
July	77.5	4.0	3.5	6.5	0.6	1.0	2.6	4.9	3.3	21.0
August	70	4.0	4.9	7.0	0.6	1.4	2.4	4.9	3.3	22.0
September	65	2.0	5.0	7.0	0.6	1.2	2.3	4.2	3.3	20.0
October	40	1.0	2.8	6.9	0.6	0.9	2.1	2.0	3.2	17.0
November	30	0.0	2.0	2.0	0.1	0.0	0.0	2.0	2.7	15.0
December	35	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.5	15.0
Total		21.0	35.7	57.4	5.4	8.5	17.3	31.1	34.5	

Table 3.2-1.Canal Demand and Operation Components for MID.

Turlock Irriga	tion District									
			Canal	Canal	System			Turlock Lk	Other	
	Turnout	Nominal	Operational	Operational	Losses		Nominal	and Upper	Delivery	Turlock Lk
	Delivery	Private GW	Spills	Spills	below	Intercepted	TID GW	Canal	from	Target
	Factor	Pumping	Critical	Non-crit	Turlock Lk	Flows	Pumping	Losses	Turlock Lk	Storage
Month	%	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF
January	30	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	18.0
February	30	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	25.0
March	65	1.2	3.0	3.0	4.5	0.0	4.1	1.0	0.0	30.0
April	57.5	2.4	5.1	6.3	4.5	0.0	8.0	6.6	0.0	30.0
May	85	3.6	4.6	6.7	4.5	0.0	10.3	7.7	0.0	32.0
June	92.5	5.2	4.2	6.7	4.5	0.0	12.4	8.2	0.0	32.0
July	72.5	6.4	4.2	6.7	4.5	0.0	14.6	8.7	0.0	32.0
August	62.5	6.2	4.0	7.3	4.5	0.0	13.3	9.0	0.0	30.0
September	67.5	3.9	3.2	7.3	4.5	0.0	9.1	5.0	0.0	27.0
October	40	2.4	2.3	7.3	4.5	0.0	5.3	2.0	0.0	13.0
November	30	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	13.0
December	30	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	13.0
Total		31.3	38.6	59.3	39.2	0.0	77.1	52.2	0.0	

 Table 3.2-2.
 Canal Demand and Operation Components for TID.

 Turlock trination District
 Components for TID.

3.3 Required FERC flows at La Grange Bridge

The current FERC minimum flow requirements at La Grange Bridge are included in the Model. In the Model the terms "La Grange releases", "flows at La Grange Bridge" or "releases at La Grange diversion dam" are used interchangeably to mean the minimum flow requirements under the Project's current FERC license as measured at the USGS gage "Tuolumne River at La Grange, CA". The annual flow requirement is established for the April-March flow year beginning April based on pre-knowledge of the final San Joaquin River Index (60-20-20) for the year. The annual volume including "interpolation water" is computed using the FERC Settlement Agreement procedures, which includes a revised year type distribution using a 1906-2011 population of historical years. The interpolation water is assumed to be spread among April and May volumes.

The Model assumes each month's volume of the annual volume is spread evenly across the days of the months, except during April and May where the user can define the distribution of daily flows. The user can define the distribution as: 1) total monthly volume spread evenly across all days of a month, or 2) a user-specified daily distribution of monthly volume during April and May. Figure 3.3-1 illustrates the outcome of the two assumed flow distributions during April and May. The pulsing pattern option shown in Figure 3.3-1 is being used by the Model.

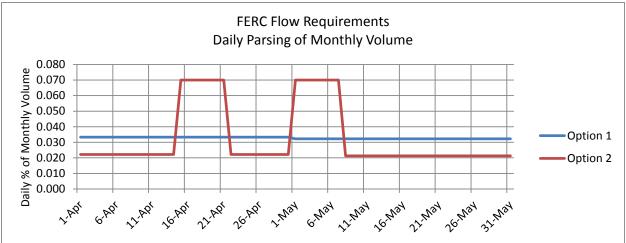


Figure 3.3-1. User-specified Distribution of April and May FERC Flow Requirements.

3.4 Reservoir and Release Management

Don Pedro Reservoir storage is initially checked against a preferred storage target. The Model allows the user to establish the preferred storage target. The preferred storage target is the Army Corps of Engineers (ACOE) rain flood reservation objective, except after July 1, when there is no required reservation space. The preferred storage target reflects a drawdown to evacuate storage during the summer in late and wet runoff years. The preferred target storage is again equal to the ACOE objective on October 7. Figure 3.4-1 illustrates the reservoir storage target used in the Model.

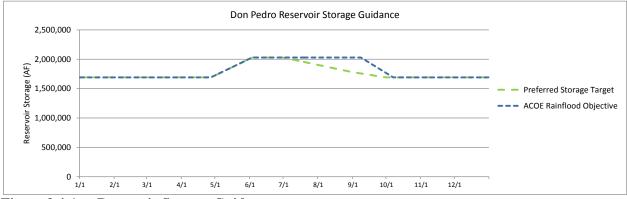


Figure 3.4-1. Reservoir Storage Guidance.

For a day of Don Pedro Reservoir operation, the day's inflow is a computed amount from upstream CCSF System operations and unregulated inflow. The stream flow requirements contained in the FERC license at La Grange Bridge and the MID and TID canal diversions are the release from Don Pedro Reservoir. The prior day's reservoir evaporation is included in the calculation. If the computation produces resulting Don Pedro Reservoir storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for an encroachment, and if it exists a "check" release is computed. It is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 10 days. This protocol repeats itself

every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred storage target and not require unrealistic "hard" releases of water to exactly conform to the target.

A second check release is made during the April through June period for management of anticipated snowmelt runoff. On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir from the date of forecast through the end of June (the assumed target date of reservoir filling). These forecasts determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June. For April and May, the DWR "90 percent exceedence forecast" is used for anticipated runoff, along with known minimum releases and losses, and upstream impairment. The user defines the percentage of volume (of the total volume) to be additionally released during each month. For April, 30 percent of the 3-month volume is advised for release, and during May 50 percent of the 2-month volume is advised for released. For June, the historically reported unimpaired flow (UF) flow is assumed for the runoff computation. This assumes pre-knowledge of the runoff volume for the month, and 100 percent of the excess is spread across the month. The snowmelt check release is evenly distributed across the days of the month. The release made in a day is the greater of the two check releases or the minimum release. At no time is the maximum capacity of the reservoir (2,030,000 acre-feet) allowed to be exceeded, and if necessary a release, regardless of magnitude, will be made by the Model to not exceed maximum storage capacity.

A Modesto flood control objective is incorporated into the release logic. The objective is to maintain a flow at Modesto no greater than a user specified flow rate (assumed as 9,000 cfs). The logic checks against an "allowable" La Grange release considering the lower Tuolumne River accretions and Dry Creek flow. Model logic compares the La Grange allowable release to the other check releases. The La Grange release is then reduced if necessary to not exceed the Modesto flow target objective, even if it results in an encroachment in Don Pedro Reservoir. The exception is when the reservoir reaches full (2,030,000 AF). Any computed encroachment above a full reservoir is passed and the Modesto flow objective will be exceeded.

Consistent with the original FERC license filings for the new Don Pedro Project, the minimum operating reservoir level is established at elevation 600 feet, corresponding to a storage volume of 308,960 AF. Below this elevation is referred to as the "dead pool" storage.

3.5 Water Supply Factor

A constraint to the Districts' canal diversions is recognized when there is a reduced water supply at Don Pedro Reservoir. The premise of the (W)ater (S)upply (F)actor (WSF) is to reduce the amount of water diverted to the canals during years when lack of carryover storage at Don Pedro Reservoir becomes a concern.

The modeling mechanism used to reduce canal diversions is a factor applied to the PDAW of the canal demand. This mechanism results in a reduction to the amount of water "turned out" to the customers while still recognizing the relatively constant efficiencies of canal operations.

The WSF is established by forecasting upcoming water supply, based on antecedent storage and anticipated inflow to Don Pedro Reservoir. The forecasting procedure begins in February and ends in April. The Factor Table is based on April forecast results. The February and March Forecasts act as adjustments to get to the April 1 state. The forecasts have the following protocol:

February Forecast (forecasting April 1 state): End of January storage + Feb-Jul UF - Feb-Jul Upstream adjustment - Feb-Mar minimum river March Forecast (forecasting April 1 state): End of February storage + Mar-Jul UF - Mar-Jul Upstream adjustment - Mar minimum river April Forecast: (final) End of March storage + Apr-Jul UF - Apr-Jul Upstream adjustment

Pre-knowledge of unimpaired runoff for each forecast period is assumed, as well as knowledge of upcoming upstream impairment of the runoff.

The WSF factor / Don Pedro Storage + Inflow relationship is developed through iterations of multi-year system operation simulations. The WSF depicts actions that may be implemented during times of drought, and the projected canal diversions and reservoir storage operation during drought periods. The factors and index triggers were developed reviewing reservoir storage levels that occurred during the 1987-1992 drought.

3.6 Power Generation

Equations of Don Pedro powerhouse generation characteristics define capacity (MW) and efficiency (kWh/AF), based on reservoir storage. Capacity potential uses minimum storage of the day, while efficiency uses average storage of the day. The maximum flow through plant is assumed to be 5,400 cfs. Water that does not appear as passing through the generators is computed to be "spilled-bypassed". The power generation "cutoff" also occurs at the reservoir storage of 308,960 acre-feet or the top of dead pool.

3.7 User-Interface Adjustments

The Model allows alternative user-specified data for two components of District operations: 1) user-specified assumptions for the La Grange Bridge minimum flow requirements, and 2) a user-specified diversion for the Districts' canals. An alternative La Grange Bridge flow requirement can be incorporated by definition of required flows by periods within a year, based on year type. Entered in this protocol the input will result as a daily time series for the Model. Alternatively, a flow requirement can be entered as a daily time series. For an alternative canal diversion, an array has been provided to input a monthly by 39-year matrix of alternative canal diversions. The monthly array of data is parsed by the Model into daily distributions reflecting the current depicted daily distribution of canal diversions.

4.0 CITY AND COUNTY OF SAN FRANCISCO SYSTEM

The Model representation of the CCSF System on the Tuolumne River includes the three physical reservoirs (Hetch Hetchy Reservoir, Lake Lloyd and Lake Eleanor), diversions to the Bay Area through the San Joaquin Pipeline, and an accounting for the Don Pedro Water Bank Account. The CCSF System is illustrated in Figure 4.0-1, with detail provided for the components of explicitly modeled hydrologic parameters.

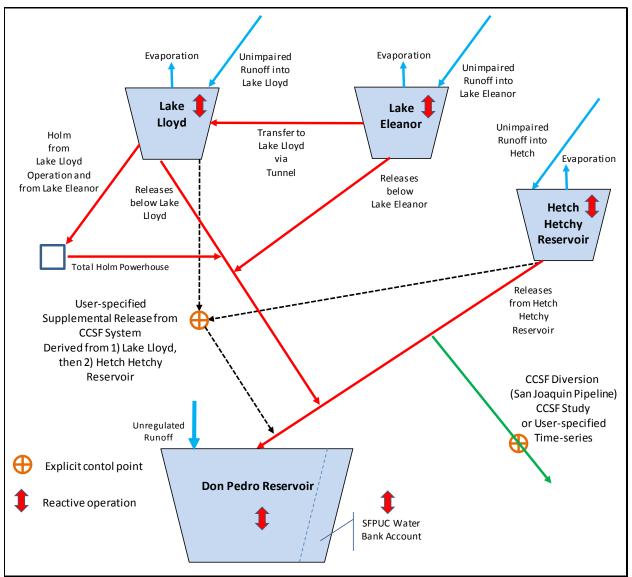


Figure 4.0-1. City and County of San Francisco System.

Each CCSF System reservoir has the same underlying operation protocol. A daily mass balance is performed: change in reservoir storage = inflow, minus outflow (releases), minus reservoir losses. If the calculation results in reservoir storage exceeding preferred/maximum capacity, an additional release of water is made.

Minimum releases from each reservoir are in accordance with current requirements for Hetch Hetchy Reservoir, Lake Lloyd and Lake Eleanor.

Each reservoir assumes a common "hold-unless-need-to-release" protocol, except as conditioned by minimum release requirements, diversions, preferred/maximum storage, snowmelt management releases, hydropower, or other flow or management objectives. In essence, each reservoir operates for its own "reservoir conservation" goal of retaining storage unless drawn down by demands or reservoir management objectives. CCSF is required by State law and its Charter to operate its system for "water first".

4.1 Hetch Hetchy Reservoir

Hetch Hetchy Reservoir storage is initially checked against a preferred storage target. The day's inflow is a given amount, and the SJPL diversion and minimum stream flow requirements below Hetch Hetchy Reservoir determine the release. The prior day's reservoir evaporation is included in the calculation. If the computation produces storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for the encroachment, and if it exists a check release is computed. It is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 7 days. This protocol repeats itself every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred target storage and not require unrealistic releases of water to exactly conform to the target.

A second check release is made during the February through June period for management of anticipated snowmelt runoff. On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir from the date of forecast through the end of June (assumed target of reservoir filling). These forecasts determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June. Pre-knowledge is used for anticipated runoff, minimum releases and losses. The user defines the percentage of volume (of the total volume for the period) to be additionally released during each month. For February through April, 10 percent of the additional release volume is advised for release, and may be additionally capped. This approach tends to hold Hetch Hetchy Reservoir releases for later release during May. The snowmelt check release is evenly distributed across the days of the month and can be capped in terms of rate (cfs) or minimum volume of the reservoir to which it can be drawn during the month. The particular release made in a day is the greater of the two check releases or the minimum release. At no time is the maximum capacity of the reservoir allowed to be exceeded, and if necessary a release, regardless of magnitude, will be made by the Model to not exceed maximum storage capacity.

For Hetch Hetchy Reservoir these two check releases typically guide the operation of the reservoir during the winter and spring. After reservoir filling, summer-time stream release requirements and the SJPL demand typically draw the reservoir down below the preferred storage targets.

Canyon Tunnel, Kirkwood Powerhouse, Mountain Tunnel and Moccasin Powerhouse are not explicitly modeled. The structure of the Model depicts the component of inflow to Don Pedro Reservoir that originates from the Hetch Hetchy Reservoir watershed. The detail of flow reaches below Hetch Hetchy Reservoir is not needed. Therefore, the simple gradation of flow between flow removed from the stream system by the SJPL and the remaining flow that will eventually reach Don Pedro Reservoir is sufficient for purposes related to the relicensing of the Districts' Don Pedro Project.

4.2 Lake Lloyd

The same underlying reservoir operation protocols of Hetch Hetchy Reservoir apply to Lake Lloyd, with a couple of modifications. Instead of the SJPL demand being assumed as an initial release requirement, a minimum Holm Powerhouse release during May through August is assumed from Lake Lloyd.

Both the initial check release for preferred storage encroachment and the snowmelt check release are computed and advised for reservoir operations. If supplemental releases above minimum releases are computed the Model routes the additional release through Holm Powerhouse up to its available capacity. The remainder of the supplemental release is routed to the stream below Lake Lloyd. A comparison is made between "Lloyd-only" use of Holm Powerhouse capacity and maximum capacity for passage to the Lake Eleanor model component.

The operation goal linkage between Lake Lloyd and Lake Eleanor assumes that Lake Eleanor will transfer water from its watershed to Lake Lloyd for the purpose of enhancing power generation at Holm Powerhouse. Thus, any available capacity at Holm Powerhouse after the Lloyd-only operation is assumed available and desired for use of a Lake Eleanor transfer. If water is transferred from Lake Eleanor the Model assumes the water to be directly routed to Holm Powerhouse which then becomes additional release from Lake Lloyd. The inclusion of the Holm Powerhouse logic in the Lloyd/Eleanor watershed logic is only done to facilitate the interaction between the two watersheds.

4.3 Lake Eleanor

Both the initial check release for preferred storage encroachment and the snowmelt check release are computed and employed into reservoir operations. In this instance of Lake Eleanor operations, the transfer "desire" for Holm Powerhouse generation is considered a disposition of the Lake Eleanor releases determined to be in excess of minimum stream requirements. To the extent that check (stream) releases are available from Lake Eleanor, they will be transferred. The amount transferred is limited by available Holm Powerhouse capacity and the assumed capacity of the Eleanor-Cherry Diversion Tunnel. The Lake Eleanor operation protocol will transfer water that would otherwise be released in excess of minimum flow requirements (largely dependent upon the preferred storage target and snowmelt releases) but it will not allow water to be "pulled" from Lake Eleanor to Lake Lloyd.

4.4 Don Pedro Inflow

The three components of regulated releases from Hetch Hetchy Reservoir (not including the SJPL), Lake Lloyd and Lake Eleanor are combined with the unregulated runoff below CCSF System reservoirs to provide the inflow data set for Don Pedro Reservoir.

4.5 Water Bank Account

A Water Bank Account calculation procedure is included in the Model. A running account of the Water Bank Account balance is computed daily, as limited by the Fourth Agreement and implementing agreement. The Model allows the computation of a "negative" balance. The accounting of the balance is incidental to model operations, and there is no auto-default feedback linkage to upstream operations if the balance is negative. To be consistent with current operations in the watershed, the user must employ the user-specified adjustment mechanism for supplemental CCSF System releases to remedy any negative balances.

For purposes of the FERC investigation, the protocols of Fourth Agreement Water Bank Accounting have been amended to incorporate a hypothetical implementation of "shared responsibility" for incremental increases in FERC-required flows for the Tuolumne River.¹ The incremental increase in FERC-required flows is determined by the daily difference between the current FERC requirements and scenario-required minimum flows. Approximately fifty-two percent (51.7121%) of the incremental difference between the flow schedules is assigned as CCSF's responsibility and counted as a debit within Water Bank Accounting.

4.6 User Interface Adjustments

The Model allows alternative user-specified data for two components of CCSF operations: 1) user-specified supplemental releases from the CCSF System, and 2) user-specified SJPL diversions.

The user-specified release from the CCSF System is to allow the user to "pull" additional water from the CCSF System as supplemental inflow to Don Pedro Reservoir. A single entry is established that will first pull water from Lake Lloyd so that water supply is preserved in the Hetch Hetchy Reservoir system for diversion to the SJPL. At a point when such supplemental releases strain Lake Lloyd storage, the supplemental releases are directed to Hetch Hetchy Reservoir. When employed, a daily flow release is directed from a reservoir at a point in logic after most of the previously described logic occurs. Thus, this release occurs in addition to what operation is already occurring by default. Such a release can affect the following day's default operation or previous periods' operations, thus results require review to determine if the user's desired result occurs. It is also necessary to determine at the end of each simulation whether the operations depicted are consistent with the keeping of the Water Bank Account Balance from being negative.

¹ The "shared responsibility" assumption is presented for the purpose of evaluating alternative operations. The assumption shall not be used as evidence in any proceeding relating to and shall not act as precedence for any allocation of Tuolumne River water between CCSF and the Districts for any purpose under the Fourth Agreement.

This adjustment capability is used to maintain the Water Bank Account Balance greater than zero. There is no auto-default logic to keep the Water Bank Account Balance from going negative. In a typical scenario of normal CCSF System operations during most years, for this level of modeling, the Water Bank Account would not affect CCSF upstream operations. The exception is during prolonged drought when the default reservoir operation of CCSF System reservoirs attempts to hold stream releases to a minimum. In the modeled WY 1971 to 2009, the period 1987 through 1992, and possibly other periods may drive the Water Bank Account to a negative condition. The release adjustment is used to provide additional releases from the CCSF System to avoid driving the Water Bank Account negative.

The second adjustment to SF System hydrology can be made to the pre-specified time series of monthly SJPL diversion. The user is provided a tool to enter an alternative time series of data. This capability can be used to adjust CCSF System diversions from the Tuolumne River.

5.0 MODEL STRUCTURE

The Model was constructed within the platform of a Microsoft Excel 2010 workbook. All Model logic is contained within cells of the workbook with no macros or calls to other forms of programming such as Visual Basic for Applications. Numerous worksheets within the workbook represent logical groupings of either sub-system facilities and operations, or input/output functionality. The worksheets of the Model are briefly described in Table 5.0-1. Some of the worksheets in the Model are fixed to prevent inadvertent changes to certain facility functions and operations. These aspects of the Model are consistent with the FERC-approved study plan.

Purpose	Worksheet Name	Description
		Contains user inputs for lower Tuolumne River flow
Model Input	UserInput*	requirements, Districts' canal diversions, CCSF SJPL and CCSF
		supplemental releases
		Contains model logic and user input for CCSF supplemental
Model Input/Operations	WaterBankRel*	releases (Model component worksheet) (preferred daily entry
		method)
Summarize Results	Review*	Provides summary of results and simulation warnings
Model Input	Control	Contains inputs for facility characteristics, system operation and configuration
Model Output	Output*	Results of scenario specific simulation in HEC-DSS format
Comparison Results	Test_Case	Results of Test Case simulation (HEC-DSS format)
•	DCC A marCanana *	Plots any group of parameters for a calendar year from HEC-
	DSSAnyGroup*	DSS format
	DSSMonthTable*	Plots and tables up to four parameters, summarizing daily data
	DSSWonth Lable*	by month from HEC-DSS format
	Switches*	Provides an echo of assumptions and values of UserInput and
Summarize Results		Control worksheets
Summarize Results	ModelYearofDaily*	Plots and tables any single parameter for a calendar or water
	Model realorDally	year from Model component worksheets
	ModelAnyGroup*	Plots any group of parameters for a calendar year from Model
	ModerAllyOroup	component worksheets
	ModelMonthTable*	Plots and tables up to four parameters, summarizing daily data
	Wodenviolium able	by month from Model component worksheets
	DonPedro	Contains model logic for Don Pedro Reservoir operation
	Donreato	(Model component worksheet)
	SFHetchHetchy	Contains model logic for Hetch Hetchy Reservoir operation
	SPricemetery	(Model component worksheet)
Model Operations	SFLloyd	Contains model logic for Lake Lloyd operation (Model
would operations	SI Lloyd	component worksheet)
	SFEleanor	Contains model logic for Lake Eleanor operation (Model
		component worksheet)
	SFWaterBank	Contains model logic for Water Bank operation (Model
		component worksheet) (year type plus daily entry method)

Table 5.0-1.Model Worksheets.

Purpose	Worksheet Name	Description
	DPGroup*	Plots simulation of Don Pedro Reservoir operations and River
	Droioup	flows (from Model component worksheets)
	DPGroup86_94*	Plots simulation of Don Pedro Reservoir operation during 1986-
	DF010up80_94	1994 (from Model component worksheets)
	HHGroup*	Plots simulation of Hetch Hetchy Reservoir operation (from
	nnoioup.	Model component worksheets)
	LloydGroup*	Plots simulation of Lake Lloyd operation (from Model
Summarize Results	LloyuOloup	component worksheets)
Summarize Results	ELGroup*	Plots simulation of Lake Eleanor operation (from Model
	ELGIOUP	component worksheets)
	WBGroup*	Plots simulation of Water Bank Balance computation (from
	w BOIoup	Model component worksheets)
	SFSysGroup*	Plots simulation of CCSF System reservoirs (from Model
	Sisysoloup	component worksheets)
	SFGroup86_94*	Plots simulation of CCSF System operation during 1986-1994
	51'010up80_94	(from Model component worksheets)
	LaGrangeSchedule	Contains model logic for 1995 FERC minimum flow
		requirements (Model component worksheet)
	DailyCanalsComput	Contains model logic for computation of daily District canal
	e	demand (Model component worksheet)
Model Operations	DailyCanals	Contains model logic for computation of user-defined canal
woder operations	DanyCanais	demand (Model component worksheet)
	DPWSF	Contains model logic for computation of Don Pedro water
	DI WDI	supply factor (Model component worksheet)
	CCSF	Contains model logic for CCSF release and diversion
		requirements (Model component worksheet)
Model Input	Hydrology	Contains input data for hydrology
	602020	Contains input data for forecasting hydrology

"*" Identifies worksheets accessible as user interfaces.

5.1 UserInput Worksheet

This worksheet (UserInput) provides the interface for entering assumptions for minimum flow schedules for the lower Tuolumne River at La Grange Bridge, canal diversions by the Modesto Irrigation District and Turlock Irrigation District, supplemental releases to Don Pedro Reservoir from the CCSF System, and diversions by CCSF through the San Joaquin Pipeline. The worksheet is described below.

5.1.1 Contents Description and Study Name

This section (Figure 5.1-1) provides an index of the contents included in the worksheet, and identifies a named label for the particular study. An alpha numeric entry is entered (UI 1.00) for the study name, which is then incorporated into the DSS output interface tab (see worksheet Output description).

5.1.2 Section 1: Minimum Flow Requirements at La Grange Bridge

This section (Figure 5.1-2) provides an entry of the minimum flow schedule for the lower Tuolumne River. Switch UI 1.10 directs the use of the current 1995 FERC schedule (UI 1.10 = 0) or an alternative schedule (UI 1.10 = 1). If an alternative schedule is directed, Switch UI 1.20

directs the use of a user-defined daily times series (UI 1.20 = 0) or the use of a user-specified year type schedule (UI 1.20 = 1).

<u>Daily Time Series</u> - If the daily time series is directed, a flow value (expressed in average daily flow - cfs) must be entered in Column BM of this worksheet for each day beginning October 1, 1970 through September 30, 2009.

Year Type Schedule - If the year type schedule is directed, values must be entered into the matrix provided at UI 1.30. Values are entered as average daily flow (cfs) for 6 year types, for up to 24 discrete periods during the year. The periods are identified in MM.DD format. For instance, for a flow to be provided for January 1 through January 15 the flow would be identified with a period starting 01.01 (January [01], day 1) and ending with a different flow identified with a starting period of 01.16 (January [01], day 16). The year type has been established by the naming of 6 year types, wet, above normal, normal, below normal, dry and critical. Using the water year runoff for the years 1921 through 2011 (91 years), the years were rank ordered from wettest to driest. The wettest 20 percent of the years (18 years) are designated the wet year type. The next wettest 18 years are designated the above normal year type. And so on for the normal and below normal year types. The driest 20 percent of years are split between the dry and critical year types. After the demarcation occurs for each year the data set is reduced to only the 1971 through 2009 modeling period (39 years). The reduced set of years of the modeling period maintains a year type frequency distribution similar to the larger data set's 20/20/20/20/10/10 percent frequency. Switch UI 1.40 directs the monthly sequence of the flow requirement year. For instance, if the flow schedule is to be established for a year beginning February 1 of the year, UI 1.40 would be set to "Feb". The applicable year type schedule would be applied beginning February 1 of the year and continue through January 31 of the following year. Switch UI 1.40 can be set to any month February (Feb) through June (Jun).

The current 1995 FERC minimum flows to the lower Tuolumne River at La Grange Bridge are illustrated in this section for comparison purposes only, and the values are arranged in the context of the year type designations described above. The values reflect an assumption of two equal periods of flow requirements during each month. If Switch UI 1.10 directs the use of the current schedule, the 1995 FERC schedule as defined by the 1995 FERC Settlement Agreement is implemented including the use of its definition of year types and discrete periods of flow requirements during the year. The 1995 FERC schedule is computed in worksheet LaGrangeSchedule.

User Defined Input
Variables Affected by User Entered in Blue Shaded Cells
Contents: Section 1 - Alternative Flow Requirements at La Grange Bridge Section 2 - Alternative Modesto and Turlock Canal Diversions Section 3 - Supplemental Release from CSF Upstane Reservoirs Section 4 - Alternative CCSF San Joaquin Pipeline
(UI 1.00) Enter Study Reference: Test_Case For Part 6 of DSS file (minimize length of name)

Figure 5.1-1. Contents Description and Study Name.

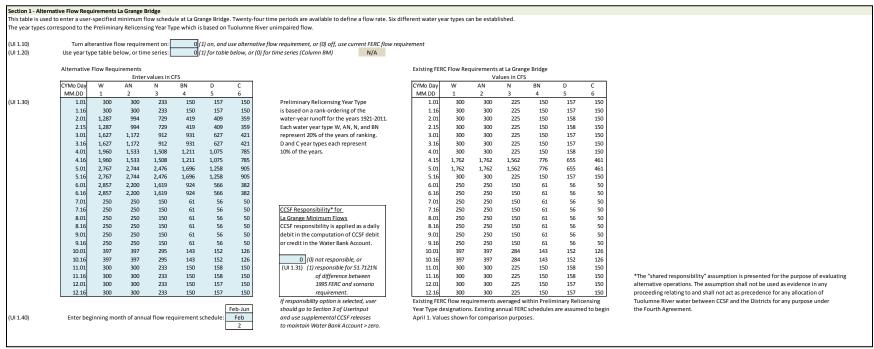


Figure 5.1-2. Minimum Flow Requirements at La Grange Bridge.

Shared responsibility for incremental increases in FERC-required flows for the Tuolumne River is enabled with Switch 1.31.² The incremental increase in FERC-required flows is determined by the daily difference between the current FERC requirements and scenario-required minimum flows. Approximately fifty-two percent (51.7121%) of the incremental difference between the flow schedules is assigned as CCSF's responsibility and counted as a debit within Water Bank Accounting. If enabled, shared responsibility will cause an effect in the CCSF Water Bank Account which requires review and possible revision to CCSF supplemental release.

5.1.3 Section 2: Canal Diversions of Modesto Irrigation District and Turlock Irrigation District

This section provides an entry of the diversions of the Modesto Irrigation District and Turlock Irrigation District. Switch UI 2.10 directs the use of Test Case diversions (UI 2.10 = 0) or user specified canal diversions (UI 2.10 = 1). If Test Case diversions are directed, a pre-processed daily time series of canal diversions is used. If directed to use user-specified canal diversions, the matrix tables shown at UI 2.30 (Figure 5.1-3) for Modesto Irrigation District) and at UI 2.40 (Figure 5.1-4) for Turlock Irrigation District) require input values for each month of each simulation year, beginning October 1970 (water year 1971) through September 2009. Values are entered as monthly volumes (acre-feet), which will be parsed by the Model into a daily distribution each month represented by the distribution pattern of the Test Case diversions. The Test Case diversions to the Modesto Canal and Turlock Canal are illustrated in this section for comparison purposes.

5.1.4 Section 3: Supplemental Releases of City and County of San Francisco

This section (Figure 5.1-5) provides entry of supplemental releases from CCSF upstream facilities. Switch UI 3.10 directs the use of a suggested method for defining daily supplemental releases (UI 3.10 = 1) or the use of a user-specified table of supplemental releases with or without consideration of Test Case supplemental releases (UI 3.10 = 0), other methods. If the suggested daily supplemental releases method is selected (UI 3.10 = 1) the user must go to worksheet WaterBankRel to complete Model input (see worksheet WaterBankRel description). If the "other methods" path is selected (UI 3.10 = 0) the user must provide additional direction. Switch UI 3.20 directs the use of Test Case supplemental releases (UI 3.20 = 0) or the use of a user-specified table of supplemental releases (UI 3.20 = 1). The user must also direct the consideration of Test Case supplemental releases. To only use the user-specified table of supplement releases, Switch UI 3.30 is set to 0. To add Test Case supplemental releases to the user-specified table of supplemental releases, Switch UI 3.30 is set to 1. The format and application of the user-specified table is the same as described for the entry of alternative flow requirements in Section 1. Values must be entered into the matrix provided at UI 3.40. Values are entered as a daily volume (acre-feet) for 6 year types, for up to 24 discrete periods during the year. The periods are identified in MM.DD format. The year type has been established by the naming of 6 year types, wet, above normal, normal, below normal, dry and critical. Switch UI 3.50 directs the monthly sequence of the supplemental release year. For instance, if the schedule

² The "shared responsibility" assumption is presented for the purpose of evaluating alternative operations. The assumption shall not be used as evidence in any proceeding relating to and shall not act as precedence for any allocation of Tuolumne River water between CCSF and the Districts for any purpose under the Fourth Agreement.

is to be established for a year beginning February 1 of the year, UI 3.50 would be set to "Feb". The applicable year type schedule would be applied beginning February 1 of the year and continue through January 31 of the following year. Switch UI 3.50 can be set to any month February (Feb) through June (Jun). The Test Case supplemental release schedule is illustrated in this section for information purposes.

5.1.5 Section 4: San Joaquin Pipeline Diversions of City and County of San Francisco

This section (Figure 5.1-6) provides an entry for the diversions of the CCSF System to the San Joaquin Pipeline. Switch UI 4.10 directs the use of Test Case diversions (UI 4.10 = 0), or user-specified diversions (UI 4.10 = 1). If Test Case diversions are directed, a pre-processed time series of diversions is used. If directed to use user-specified diversions, the matrix table shown at UI 4.20 requires input values for each month of each simulation year, beginning October 1970 (water year 1971) through September 2009. Values are entered as monthly volumes (acre-feet), which will be parsed by the Model into an equal daily distribution each month.

Section 2	Altomativ	e Modesto	and Turlock	Canal Divo	rcione																									
		d to enter u				Modorto I	D and Turks	ck ID Ente	vra valuo f	or oach mo	ath of oad	- voor																		
		s of canal di										·																		
me monu	my volume	s or carrar ur	versions ar	euistiibute	u uany wn		ii baseu oli	the uaity	uistiibutio	nuseuron	ille base ca	ise.																		
(111 2 4 0)		-			. Г				, ,																					
(UI 2.10)		Turn	alterantive	canal diver	rsion on:	0	ı) on, ana ı	ise table b	elow, or (U) off, use Te	est case ca	nai aiversio	on																	
	Prelim	Alternative	MID Canal	Diversion												Test Case N	ID Canal Di	version												
	Relicense	Aitemative	WID Callal	Diversion			Entorval	ues in acro	foot							Test case iv	ID Callal Di	version			Value	s in acre-fe	not.						ſ	Full Dem
	Yr-Type	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Total WY	Total WY
(UI 2.20)	N	1971	20.952	2,700	2,500	4,300	3,300	14,746	30.656	42,917	47.253	54,987	49.086	32,192	305.589	1971	20.952	2,700	2,500	4.300	3,300	14,746	30.656	42,917	47,253	54,987	49,086	32.192	305.589	305,589
(012.20)	BN	1972	20,952	5,130	2,500	4,300	5,679	24,844	46.800	46,544	46,542	54,987	49,086	30,637	338,001	1972	20,952	5,130	2,500	4,300	5,679	24.844	46,800	46,544	46,542	54,987	49,086	30,637	338,001	338,001
	N	1973	20,952	2,700	2,500	4,300	3,300	14,746	23,737	45,374	47,016	54,987	49,086	32,658	301,356	1973	20,952	2,700	2,500	4,300	3,300	14,746	23,737	45,374	47,016	54,987	49,086	32,658	301,356	301,356
	AN	1974	20,952	2,700	2,500	4,300	3,300	14,746	18,115	42,917	45,239	49,733	49,086	32,658	286,246	1974	20,952	2,700	2,500	4,300	3,300	14,746	18,115	42,917	45,239	49,733	49,086	32,658	286,246	286,246
	AN	1975	20,952	5,460	2,500	4,300	3,300	14,746	28,782	44,672	47,253	54,859	43,423	32,658	302,906	1975	20,952	5,460	2,500	4,300	3,300	14,746	28,782	44,672	47,253	54,859	43,423	32,658	302,906	302,906
	c	1976	20,952	6,451	2,500	4,300	6,350	30,232	34.676	38,540	38,163	44,939	35,682	24,524	287,308	1976	20,952	6,451	2,500	4,300	6,350	30,232	34,676	38,540	38,163	44,939	35,682	24,524	287,308	324,478
	c	1977	14,568	5,081	2,500	4,300	6,379	17,127	30,279	23,572	28,282	33,405	30,961	19,432	215,886	1977	14,568	5,081	2,500	4,300	6,379	17,127	30,279	23,572	28,282	33,405	30,961	19,432	215,886	316,195
	w	1978	10,761	2,700	2,500	4,300	3,300	14,746	10,143	39,642	47,253	54,987	49,086	25,506	264,924	1978	10,761	2,700	2,500	4,300	3,300	14,746	10,143	39,642	47,253	54,987	49,086	25,506	264,924	271,015
	N	1979	23,490	2,700	2,500	4,300	3,300	14,746	27,340	45,140	47,253	53,962	49,086	32,658	306,475	1979	23,490	2,700	2,500	4,300	3,300	14,746	27,340	45,140	47,253	53,962	49,086	32,658	306,475	306,475
	w	1980	20,952	2,700	2,500	4,300	3,300	14,746	24,602	43,034	47,253	50,758	49,086	32,658	295,889	1980	20,952	2,700	2,500	4,300	3,300	14,746	24,602	43,034	47,253	50,758	49,086	32,658	295,889	295,889
	D	1981	23,236	7,441	2,500	4,300	3,300	14,746	33,395	45,608	47,253	54,987	49,086	32,658	318,510	1981	23,236	7,441	2,500	4,300	3,300	14,746	33,395	45,608	47,253	54,987	49,086	32,658	318,510	318,510
	w	1982	20,952	2,700	2,500	4,300	3,300	14,746	12,687	42,917	45,476	54,987	49,086	17,265	270,916	1982	20,952	2,700	2,500	4,300	3,300	14,746	12,687	42,917	45,476	54,987	49,086	17,265	270,916	270,916
	w	1983	20,952	2,700	2,500	4,300	3,300	14,746	11,058	40,110	47,253	54,987	47,529	15,866	265,301	1983	20,952	2,700	2,500	4,300	3,300	14,746	11,058	40,110	47,253	54,987	47,529	15,866	265,301	265,301
	AN	1984	20,952	2,700	2,500	4,300	3,300	14,746	37,719	46,777	47,253	54,859	49,086	32,502	316,695	1984	20,952	2,700	2,500	4,300	3,300	14,746	37,719	46,777	47,253	54,859	49,086	32,502	316,695	316,695
	BN	1985	20,952	2,700	2,500	4,300	3,300	14,746	33,106	46,193	45,950	54,987	49,086	31,881	309,700	1985	20,952	2,700	2,500	4,300	3,300	14,746	33,106	46,193	45,950	54,987	49,086	31,881	309,700	309,700
	W	1986	20,952	2,700	2,500	4,300	3,300	14,746	19,701	42,215	47,253	54,987	49,086	32,192	293,932	1986	20,952	2,700	2,500	4,300	3,300	14,746	19,701	42,215	47,253	54,987	49,086	32,192	293,932	293,932
	С	1987	20,952	7,441	2,500	4,300	3,300	11,348	33,450	38,540	38,264	45,048	40,977	26,903	273,023	1987	20,952	7,441	2,500	4,300	3,300	11,348	33,450	38,540	38,264	45,048	40,977	26,903	273,023	307,868
	С	1988	14,568	5,081	2,500	4,300	3,300	10,522	20,959	28,485	29,064	35,631	32,822	21,807	209,039	1988	14,568	5,081	2,500	4,300	3,300	10,522	20,959	28,485	29,064	35,631	32,822	21,807	209,039	288,428
	BN	1989	13,109	2,700	2,500	4,300	5,631	11,348	37,004	38,341	38,264	45,048	40,375	15,537	254,156	1989	13,109	2,700	2,500	4,300	5,631	11,348	37,004	38,341	38,264	45,048	40,375	15,537	254,156	293,803
	D	1990	14,568	5,361	2,500	4,300	5,590	15,190	29,936	21,644	29,236	34,588	31,919	20,952	215,784	1990	14,568	5,361	2,500	4,300	5,590	15,190	29,936	21,644	29,236	34,588	31,919	20,952	215,784	304,883
	BN	1991	11,125	6,242	2,500	4,300	5,812	10,324	26,779	32,222	30,198	37,899	33,900	23,035	224,335	1991	11,125	6,242	2,500	4,300	5,812	10,324	26,779	32,222	30,198	37,899	33,900	23,035	224,335	299,335
	С	1992	12,215	6,407	2,500	4,300	3,300	9,811	16,590	29,752	29,193	35,255	32,639	21,693	203,656	1992	12,215	6,407	2,500	4,300	3,300	9,811	16,590	29,752	29,193	35,255	32,639	21,693	203,656	285,286
	AN	1993	11,399	2,700	2,500	4,300	3,300	14,746	23,160	36,951	44,528	54,987	49,086	32,658	280,315	1993	11,399	2,700	2,500	4,300	3,300	14,746	23,160	36,951	44,528	54,987	49,086	32,658	280,315	285,768
	D	1994	20,952	2,700	2,500	4,300	3,300	17,718	28,427	26,707	38,264	45,048	40,977	26,639	257,531	1994	20,952	2,700	2,500	4,300	3,300	17,718	28,427	26,707	38,264	45,048	40,977	26,639	257,531	287,956
	W	1995	14,568	2,700	2,500	4,300	3,300	14,746	15,953	32,974	43,936	54,987	49,086	32,658	271,707	1995	14,568	2,700	2,500	4,300	3,300	14,746	15,953	32,974	43,936	54,987	49,086	32,658	271,707	273,991
	AN	1996	23,490	7,441	2,500	4,300	3,300	14,746	24,746	30,868	47,134	54,987	49,086	32,658	295,257	1996	23,490	7,441	2,500	4,300	3,300	14,746	24,746	30,868	47,134	54,987	49,086	32,658	295,257	295,257
	w	1997	20,952	2,700	2,500	4,300	3,300	14,746	45,935	45,491	46,542	54,987	49,086	32,658	323,197	1997	20,952	2,700	2,500	4,300	3,300	14,746	45,935	45,491	46,542	54,987	49,086	32,658	323,197	323,197
	W	1998	21,967	2,700	2,500	4,300	3,300	14,746	20,421	19,404	43,462	54,987	49,086	32,502	269,376	1998	21,967	2,700	2,500	4,300	3,300	14,746	20,421	19,404	43,462	54,987	49,086 49.086	32,502	269,376	269,376
	AN N	1999	20,952	2,700 6.781	2,500 2,500	4,300	3,300 3.300	14,746	31,232	43,619	47,134 38.722	54,987	49,086	32,347 32.192	306,904 279.187	1999 2000	20,952	2,700	2,500	4,300	3,300	14,746	31,232	43,619	47,134 38.722	54,987	49,086 49,086	32,347 32.192	306,904	306,904 279.187
		2000	23,236	., .	1	4,300		14,746	19,989	29,347		54,987	49,086	. , .	- , -		23,236	6,781	2,500	4,300	3,300	14,746	19,989	29,347	,	54,987	- ,		279,187	., .
	BN	2001 2002	20,952 21,713	5,790 2,700	2,500 2,500	4,300 4,300	3,300 3,300	14,746	21,863 36,133	44,204 45,959	46,898 47,253	54,987 54,987	49,086 49,086	31,414 32,658	300,040 315,335	2001 2002	20,952 21,713	5,790 2,700	2,500 2,500	4,300 4,300	3,300 3,300	14,746 14,746	21,863 36,133	44,204 45,959	46,898 47,253	54,987 54,987	49,086 49,086	31,414 32,658	300,040 315,335	300,040 315,335
	N	2002	21,713	2,700	2,500	4,300	3,300	14,746 14,746	27,196	45,959 44,087	47,253	54,987 54,987	49,086	32,658	304,888	2002	23,490	2,700	2,500	4,300	3,300	14,746	27,196	45,959 44,087	47,253	54,987 54,987	49,088	32,658	315,335	315,335
	BN	2003	23,490	6,781	2,500	4,300	5,959	25,777	51,269	46,777	47,253	54,987	49,086	32,038	350,369	2003	23,490	6,781	2,500	4,300	5,959	25,777	51,269	46,777	47,253	54,987	47,070	32,038	350,369	350,369
	W	2004	23,450	2,700	2,500	4,300	3,300	14.746	36,422	46,193	47,233	54,987	49,086	30,792	313,112	2004	20,952	2,700	2,500	4,300	3,300	14,746	36,422	46,193	47,233	54,987	49,080	30,792	313,112	313,112
	w	2005	22,982	6.121	2,500	4,300	3,300	14,746	13.115	41,747	47,253	54,987	49,086	32,502	292.640	2005	20,552	6.121	2,500	4,300	3,300	14,746	13.115	41,747	47,253	54,987	49,086	32,502	292.640	292,640
	D	2000	20,952	2,700	2,500	4,300	5,672	22,068	36.391	38,142	38,264	45,048	40,977	25.317	282,330	2000	20,952	2,700	2,500	4,300	5,672	22,068	36,391	38.142	38,264	45.048	40,977	25,317	282.330	315,945
	BN	2007	14,568	5,923	2,500	4,300	3,300	11,348	31,368	38,540	38,264	45,048	40,977	26,903	263,037	2007	14,568	5,923	2,500	4,300	3,300	11.348	31,368	38,540	38,264	45,048	40,977	26,903	262,030	299,996
	N	2009	14,568	5,361	2,500	4,300	3,300	14,746	47.088	44,204	46,661	54,987	49,086	31,259	318,060	2009	14,568	5,361	2,500	4,300	3,300	14,746	47,088	44,204	46,661	54,987	49,086	31,259	318,060	320,443
		Ave	19,262	4.197	2,500	4,300	3,830	15,412	28,160	38,984	42.875	50.662	45,333	28.663	284.177	Ave	19,262	4,197	2,500	4,300	3,830	15,412	28,160	38,984	42,875	50.662	45,333	28.663	284.177	300.954
			.,	,	,	,000	.,000	.,	.,-00	,	,0.0		.,000	.,			.,	,	,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	.,	.,	,	,0.0	,	.,000	./000	. /	/00 .

Figure 5.1-3. Canal Diversions of Modesto Irrigation District.

		_																												
	Prelim	Alternative	TID Canal	Diversion												Test Case T	D Canal Di	version											r	
	Relicense	·						lues in acre														s in acre-f								Full Dem
(1)	Yr-Type	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	Total
(UI 2.30)	N	1971 1972	31,487	1,000	1,000	6,000	8,000	42,220	71,385	79,506	96,454	118,397	101,372	51,350	608,171	1971 1972	31,487	1,000	1,000	6,000	8,000	42,220	71,385	79,506	96,454		101,372	51,350	608,171	608,17
	BN	-	31,487	4,120	1,000	6,000	12,542	., .	104,879	92,357	95,639	118,397	101,372	50,168	688,170		31,487	4,120	1,000	6,000	12,542	70,210	104,879	92,357	95,639	118,397	101,372	50,168	688,170	688,17
	N	1973	31,487	1,000	1,000	6,000	8,000	42,220	44,833	89,056	96,105	118,397	101,372	52,681	592,149	1973	31,487	1,000	1,000	6,000	8,000	42,220	44,833	89,056	96,105	118,397	101,372	52,681	592,149	592,14
	AN AN	1974 1975	31,487 31,487	1,000 4,761	1,000 1,000	6,000 6,000	8,000 8,000	42,220 42,220	39,626 59,410	82,689 85,755	92,845 96,454	106,930 117,430	101,372 92,559	52,681 52.681	565,851 597,756	1974 1975	31,487 31,487	1,000 4,761	1,000 1,000	6,000 6,000	8,000 8,000	42,220 42,220	39,626 59,410	82,689 85,755	92,845 96,454	106,930 117,430	101,372 92,559	52,681 52,681	565,851 597,756	565,85 597,75
	AN	1975	31,487	6,684	1,000	6,000	13,169	42,220 81,414	79,704	77,553	79,063	97,737	72,955	32,001	578,770	1975	31,487	6,684	1,000	6,000	13,169	42,220 81,414	79,704	77,553	79,063	97.737	72,955	32,001	578,770	669,74
	c	1970	20.773	1.000	1,000	6,000	13,109	50.509	72,025	45.645	54.416	68.098	57.243	26.675	416,755	1970	20,773	1,000	1,000	6,000	13,371	50,509	72.025	45.645	54.416	68.098	57.243	26.675	416,755	669.17
	w	1978	11,340	4,569	1,000	6,000	8,000	42,220	9,548	72,786	96,454	118.397	101,372	37.013	508,698	1978	11,340	4,569	1,000	6,000	8,000	42,220	9,548	72,786	96,454	118,397	101.372	37,013	508,698	524,47
	N	1979	31,487	1,000	1,000	6,000	8,000	42,220	53,683	87.405		.,		52 681	596,521	1979	31,487	1,000	1,000	6,000	8,000	42,220	53.683	87.405			101,372	52,681	596,521	596,52
	w	1980	31,487	1,000	1,000	6,000	8,000	42,220	49,345	81,864	96,454		101,372	52,681	583,741	1980	31,487	1,000	1,000	6,000	8,000	42,220	49,345	81,864			101,372	52,681	583,741	583,74
	D	1981	31,487	7,966	1,000	6,000	11.130	42.220	78.153	90.235	96,454	118,397	101.372	52.681	637,093	1981	31,487	7,966	1,000	6.000	11.130	42,220	78,153	90.235	96,454	118,397	101.372	52,681	637.093	637.09
	w	1982	31,487	1,000	1,000	6,000	8,000	42,220	18,801	79,506	93,427	118,397	101,372	26,075	527,285	1982	31,487	1,000	1,000	6,000	8,000	42,220	18,801	79,506	93,427	118,397	101,372	26,075	527,285	527,28
	w	1983	31,487	1,000	1,000	6,000	8,000	42,220	14,289	73,376	96,454	118,397	97,046	25,780	515,047	1983	31,487	1,000	1,000	6,000	8,000	42,220	14,289	73,376	96,454	118,397	97,046	25,780	515,047	515,04
	AN	1984	31,487	1,000	1,000	6,000	8,000	42,220	89,260	92,475	95,173	118,120	101,372	51,794	637,901	1984	31,487	1,000	1,000	6,000	8,000	42,220	89,260	92,475	95,173	118,120	101,372	51,794	637,901	637,90
	BN	1985	31,487	1,000	1,000	6,000	8,000	42,220	80,930	92,003	92,845	118,397	101,372	51,942	627,195	1985	31,487	1,000	1,000	6,000	8,000	42,220	80,930	92,003	92,845	118,397	101,372	51,942	627,195	627,19
	w	1986	31,487	1,000	1,000	6,000	8,000	42,220	36,155	80,567	96,454	118,397	101,372	50,168	572,820	1986	31,487	1,000	1,000	6,000	8,000	42,220	36,155	80,567	96,454	118,397	101,372	50,168	572,820	572,82
	С	1987	31,487	7,645	1,000	6,000	11,080	37,117	80,884	77,453	79,756	97,972	82,761	40,798	553,954	1987	31,487	7,645	1,000	6,000	11,080	37,117	80,884	77,453	79,756	97,972	82,761	40,798	553,954	640,37
	С	1988	20,773	4,345	1,000	6,000	8,000	34,416	44,841	54,744	59,435	73,648	61,984	30,238	399,424	1988	20,773	4,345	1,000	6,000	8,000	34,416	44,841	54,744	59,435	73,648	61,984	30,238	399,424	595,19
	BN	1989	13,087	1,000	1,000	6,000	11,360	37,117	89,292	76,551	79,756	97,972	80,991	19,063	513,190	1989	13,087	1,000	1,000	6,000	11,360	37,117	89,292	76,551	79,756	97,972	80,991	19,063	513,190	610,35
	D	1990	20,773	4,889	1,000	6,000	11,491	42,592	67,733	41,090	58,355	70,954	59,683	28,700	413,261	1990	20,773	4,889	1,000	6,000	11,491	42,592	67,733	41,090	58,355	70,954	59,683	28,700	413,261	632,96
	BN	1991	12,239	5,799	1,000	6,000	12,548	33,362	63,975	63,689	62,376	79,506	64,759	32,781	438,033	1991	12,239	5,799	1,000	6,000	12,548	33,362	63,975	63,689	62,376	79,506	64,759	32,781	438,033	624,15
	С	1992	14,931	5,806	1,000	6,000	8,000	31,457	37,881	58,023	58,785	71,771	61,517	30,001	385,173	1992	14,931	5,806	1,000	6,000	8,000	31,457	37,881	58,023	58,785	71,771	61,517	30,001	385,173	586,40
	AN	1993	12,915	5,034	1,000	6,000	8,000	42,220	43,271	70,428	88,770	118,397	101,372	52,681	550,087	1993	12,915	5,034	1,000	6,000	8,000	42,220	43,271	70,428	88,770	118,397	101,372	52,681	550,087	564,46
	D	1994	31,487	4,441	1,000	6,000	8,000	42,220	67,460	54,104	79,756	97,972	82,761	39,040	514,241	1994	31,487	4,441	1,000	6,000	8,000	42,220	67,460	54,104	79,756	97,972	82,761	39,040	514,241	588,71
	w	1995	20,773	1,000	1,000	6,000	8,000	42,220	25,049	58,874	87,023	118,120	101,372	52,681	522,113	1995	20,773	1,000	1,000	6,000	8,000	42,220	25,049	58,874	87,023	118,120	101,372	52,681	522,113	527,94
	AN W	1996 1997	31,487 31,487	7,966 1,000	1,000 1,000	6,000 6,000	8,000 8.000	42,220 42,220	46,047	59,228 91,532		118,397 118,397	101,372	52,681 52.089	570,851 655,405	1996 1997	31,487 31,487	7,966 1,000	1,000 1,000	6,000	8,000 8,000	42,220 42,220	46,047	59,228 91,532	, .	118,397 118,397	101,372 101,372	52,681 52,089	570,851 655,405	570,85
	w	1997	31,487	1,000	1,000	6,000	8,000	42,220	107,135 31.470	91,532 38,950	95,173 81.784		101,372 101.372	52,089	514,360	1997	31,487	1,000	1,000	6,000 6,000	8,000	42,220	107,135 31.470	38,950		118,397	101,372	52,089	514,360	655,40 514.36
	AN	1999	31,487	1,000	1,000	6,000	8,000	42,220	75,897	38,930 88,702	96.454	118,397	101,372	52,681	623,209	1999	31,487	1,000	1,000	6,000	8,000	42,220	75.897	38,930 88,702	96,454	118,397	101,372	52,681	623,209	623.20
	N	2000	31,487	5,723	1,000	6,000	8,000	42,220	36,503	56.634	83.065	118,397	101,372	52,681	543,081	2000	31,487	5,723	1,000	6,000	8,000	42,220	36,503	56,634	83,065	118,397	101,372	52,681	543,081	543.08
	BN	2000	31,487	4,761	1,000	6.000	8,000	42,220	49.518	83.515	96.105	118,397	101,372	50.168	592,542	2000	31,487	4,761	1,000	6,000	8,000	42,220	49,518	83.515		118,397	101,372	50,168	592.542	592.54
	N	2001	31,487	1,000	1,000	6,000	8,000	42,220	84,748	81,510	96,454	118,397	101,372	52.681	624,868	2001	31,487	1,000	1,000	6,000	8,000	42,220	84,748	81,510	,	118,397	101,372	52,681	624,868	624,86
	N	2003	31,487	1,000	1,000	6,000	8.000	42,220	66.179	82,454	96.454	118,397	99.129	52,681	604,999	2003	31,487	1,000	1,000	6,000	8.000	42,220	66.179	82,454	96,454	118,397	99.129	52,681	604,999	604.99
	BN	2003	31,487	6.363	1,000	6,000	8.000		111.474	89,763		112.042	96,725	52,681	648,970	2004	31,487	6,363	1,000	6,000	8.000	42,220	111.474	89,763	91,215	112.042	96,725	52,681	648.970	648.97
	w	2005	31,487	1,000	1,000	6,000	8,000	42,220	54,725	81,275	96,454	118,397	100,731	48,099	589,386	2005	31,487	1,000	1,000	6,000	8,000	42,220	54,725	81,275	96,454	118,397	100,731	48,099	589,386	589,38
	w	2006	31,487	6,363	1,000	6,000	8,000	42,220	29,387	71,607	96,454	118,397	101,372	52,681	564,968	2006	31,487	6,363	1,000	6,000	8,000	42,220	29,387	71,607	96,454	118,397	101,372	52,681	564,968	564,96
	D	2007	31,487	1,000	1,000	6,000	12,448	70,365	85,162	76,852	79,756	97,972	82,761	36,904	581,706	2007	31,487	1,000	1,000	6,000	12,448	70,365	85,162	76,852	79,756	97,972	82,761	36,904	581,706	662,93
	BN	2008	20,773	5,707	1,000	6,000	8,000	37,117	76,901	76,952	79,756	97,972	82,761	40,798	533,738	2008	20,773	5,707	1,000	6,000	8,000	37,117	76,901	76,952	79,756	97,972	82,761	40,798	533,738	625,48
	N	2009	20,773	4,617	1,000	6,000	8,000	42,220	103,144	85,047	95,522	118,397	101,372	50,611	636,704	2009	20,773	4,617	1,000	6,000	8,000	42,220	103,144	85,047	95,522	118,397	101,372	50,611	636,704	642,67
'	•	Ave	27,456	3,271	1,000	6,000	8,952	43,791	61,044	74,917	87,340	108,669	92,511	44,747	559,697	Ave	27,456	3,271	1,000	6,000	8,952	43,791	61,044	74,917	87,340	108,669	92,511	44,747	559,697	601,21

Figure 5.1-4. Canal Diversions of Turlock Irrigation District.

								venty-four time periods are available to define the period ver unimpaired flow.	2 3.10 110 11 10	c. Six unler	cit water	icai types t	0	isileu.									
								d limit, then the supplemental release is directed to Hetc	ch Hetchy Res	servoir.													
er specifie	s whether or not Tab	ole supple	nental relea	ases are	added to Te	st Case sup	olemental re	leases.															
ternatively	, user can define a d	aily supple	emental rele	ease from	n CCSF facil	ities. This o	otion is the s	ame method used to define Test Base supplemental relea	ises to mainta	ain the Wate	r Bank Bali	ance at or al	bove zero. (S	Suggested	l method)								
JI 3.10)		Use daily	supplemen	ntal relea	ase option:	1	1) on, use da	ily defined option - go to worksheet WaterBankRel, or (0) o	off, use other	supplement	al release c	options											
ıf.	ising other supplem	ont roloac	o options S	witch I II	2 10 - 0 00	tor choicor l	olow																
UI 3.20)	Turn other u							e table below, or (0) off, use existing Test Case supplement	tal releases	N/A													
UI 3.30)	If using table below							able to existing releases, or (0) no use table only															
	Alternative									Supplementa	al Releases	(made to r	etain WB Ba	lance abo	ve zero)								
	0.44.0		nter values i				-		Prelim		<i>.</i> .												
	CYMo Day MM.DD	w	AN	N	BN	D 5	C 6		Yr-Type	Monthly Act WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
UI 3.40)	1.01	0	2 0	3 0	4 0	5 0	0	Preliminary Relicensing Year Type	N N	1971	000	0	Dec	Jan 0	reb 0	iviar 0	Apr 0	iviay 0	Jun 0	0	Aug	Sep	Total
51 5.40)	1.16	0	0	0	0	0	0	is based on a rank-ordering of the	BN	1972	0	0	0	0	0 0	0	0	0	0	0	0	0	0
	2.01	0	0	0	0	2,000	2,000	water-year runoff for the years 1921-2011.	N	1973	0	0	0	0	0	0	0	0	0	0	0	0	0
	2.15	0	0	0	0	2,000	2,000	Each water year type W, AN, N, and BN	AN	1974	0	0	0	0	0	0	0	0	0	0	0	0	0
	3.01	0	0	0	0	2,000	2,000	represent 20% of the years of ranking.	AN	1975	0	0	0	0	0	0	0	0	0	0	0	0	0
	3.16	0	0	0	0	2,000	2,000	D and C year types each represent	С	1976	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.01 4.16	0	0	0	0	2,000 2.000	2,000	10% of the years.	c w	1977 1978	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.16	0	0	0	0	2,000	2,000		N	1978	0	0	0	0	0	0	0	0	0	0	0	0	0
	5.16	0	0	0	0	2,000	2,000		w	1980	0	0	0	0	0	0	0	0	0	0	0	0	0
	6.01	0	0	0	0	2,000	2,000		D	1981	0	0	0	0	0	0	0	0	0	0	0	0	0
	6.16	0	0	0	0	2,000	2,000		w	1982	0	0	0	0	0	0	0	0	0	0	0	0	0
	7.01	0	0	0	0	0	0		w	1983	0	0	0	0	0	0	0	0	0	0	0	0	0
	7.16	0	0	0	0	0	0		AN	1984	0	0	0	0	0	0	0	0	0	0	0	0	0
	8.01 8.16	0	0	0	0	0	0		BN W	1985 1986	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.01	0	0	0	0	0	0		c	1980	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.16	0	0	0	0	0	0		c	1988	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.01	0	0	0	0	0	0		BN	1989	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.16	0	0	0	0	0	0		D	1990	0	0	0	0	0	0	0	0	0	0	0	0	0
	11.01	0	0	0	0	0	0		BN	1991	0	0	0	0	0	0	0	0	0	0	0	0	0
	11.16 12.01	0	0	0	0	0	0		C AN	1992 1993	0	0	0	0	0	0	59,864 0	70,684 0	19,366 0	21,794 0	0	0	171,708
	12.01	0	0	0	0	0	0		D	1993	0	0	0	0	0	0	0	0	0	0	0	0	0
	12.10	0	0	0	0	0	0		w	1995	0	0	0	0	0	0	0	0	0	0	0	0	0
							Feb-Jun		AN	1996	0	0	0	0	0	0	0	0	0	0	0	0	0
UI 3.50)	Enter beginni	ng month (of annual su	pplemei	ntal release	schedule:	Jun		w	1997	0	0	0	0	0	0	0	0	0	0	0	0	0
							6		w	1998	0	0	0	0	0	0	0	0	0	0	0	0	0
									AN	1999	0	0	0	0	0	0	0	0	0	0	0	0	0
									N BN	2000	0	0	0	0	0	0	0	0	0	0	0	0	0
									N	2001	0	0	0	0	0	0	0	0	0	0	0	0	0
									N	2002	0	0	0	0	ō	0	0	0	0	0	Ö	0	0
									BN	2004	0	0	0	0	0	0	0	0	0	0	0	0	0
									w	2005	0	0	0	0	0	0	0	0	0	0	0	0	0
									w	2006	0	0	0	0	0	0	0	0	0	0	0	0	0
									D	2007	0	0	0	0	0	0	0	0	0	0	0	0	0
									BN	2008 2009	0	0	0	0	0	0	0	0	0	0	0	0	0
									IN	2009	0	0	U	0	0	U	0	0	0	0	0	0	0

Figure 5.1-5. Supplemental Releases of City and County of San Francisco.

Section 4 - Alternative CCSF San Joaquin Pipeline

This section specifies the CCSF San Joaquin Pipeline diversion. Use Test Case diversions, or user-specified values by entering a value for each month of each year. The monthly volumes of pipeline diversions will be distributed daily within a month equally.

(UI 4.10) Turn alterantive pipeline diversion on: 0(0) off, use Test Case pipeline diversion, (1) on, use table below

(UI 4.10)		Turn alt	erantive pi	peline dive	rsion on:	0(0) off, use 1	Test Case p	ipeline dive	ersion, (1) c	on, use tab	le below																		
	Prelim	Alternative	SJPL Diver	ion												Test Case	JPL Diversi	on												
	Relicense						Enter va	lues in acre	e-feet												Value	s in acre-fe	et							CCSF Sys
	Yr-Type	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	Action
(UI 4.20)	N	1971	19,027	11,969	6,660	6,660	6,015	25,782	24,950	25,782	24,950	29,778	29,778	23,937	235,286	1971	19,027	11,969	6,660	6,660	6,015	25,782	24,950	25,782	24,950	29,778	29,778	23,937	235,286	0
	BN	1972	21,881	16,572	12,368	17,124	15,467	25,782	25,779	25,782	24,950	29,778	29,778	24,950	270,211	1972	21,881	16,572	12,368	17,124	15,467	25,782	25,779	25,782	24,950	29,778	29,778	24,950	270,211	0
	N	1973	21,881	14,731	12,368	6,660	6,015	6,660	16,572	25,782	24,950	29,778	29,778	23,937	219,110	1973	21,881	14,731	12,368	6,660	6,015	6,660	16,572	25,782	24,950	29,778	29,778	23,937	219,110	0
	AN	1974	17,124	10,127	6,660	6,660	6,015	6,660	7,365	24,735	23,937	29,778	29,778	24,950	193,789	1974	17,124	10,127	6,660	6,660	6,015	6,660	7,365	24,735	23,937	29,778	29,778	24,950	193,789	0
	AN	1975	17,124	0	0	25,782	11,171	6,660	10,127	24,735	23,937	29,778	29,778	24,950	204,042	1975	17,124	0	0	25,782	11,171	6,660	10,127	24,735	23,937	29,778	29,778	24,950	204,042	0
	С	1976	17,124	13,810	12,368	19,027	17,186	25,782	26,699	25,782	24,950	29,778	29,778	24,950	267,234	1976	17,124	13,810	12,368	19,027	17,186	25,782	26,699	25,782	24,950	29,778	29,778	24,950	267,234	0
	С	1977	21,881	16,572	17,124	17,124	15,467	25,782	27,620	26,638	25,779	27,589	25,782	21,175	268,535	1977	21,881	16,572	17,124	17,124	15,467	25,782	27,620	26,638	25,779	27,589	25,782	21,175	268,535	1
	W	1978	19,027	16,572	12,368	6,660	6,015	6,660	9,023	22,833	22,096	29,778	29,778	23,937	204,745	1978	19,027	16,572	12,368	6,660	6,015	6,660	9,023	22,833	22,096	29,778	29,778	23,937	204,745	0
	N	1979	17,124	13,810	17,124	15,222	6,015	17,124	22,096	25,782	24,950	29,778	29,778	23,937	242,741	1979	17,124	13,810	17,124	15,222	6,015	17,124	22,096	25,782	24,950	29,778	29,778	23,937	242,741	0
	W	1980	17,124	0	0	14,270	6,015	6,660	19,334	25,782	24,950	29,778	29,778	23,937	197,628	1980	17,124	0	0	14,270	6,015	6,660	19,334	25,782	24,950	29,778	29,778	23,937	197,628	0
	D	1981	17,124	13,810	12,891	12,368	11,171	22,833	23,937	25,782	24,950	29,778	29,778	23,937	248,358	1981	17,124	13,810	12,891	12,368	11,171	22,833	23,937	25,782	24,950	29,778	29,778	23,937	248,358	0
	W	1982	17,124	11,969	9,323	6,660	6,015	6,660	6,445	19,979	19,334	29,778	29,778	26,239	189,302	1982	17,124	11,969	9,323	6,660	6,015	6,660	6,445	19,979	19,334	29,778	29,778	26,239	189,302	0
	W	1983	19,979	11,969	6,660	6,660	6,015	6,660	7,365	12,368	11,969	29,778	29,778	28,817	178,015	1983	19,979	11,969	6,660	6,660	6,015	6,660	7,365	12,368	11,969	29,778	29,778	28,817	178,015	0
	AN	1984	22,833	9,023	6,660	6,660	6,015	25,782	24,950	24,735	23,937	29,778	29,778	24,950	235,099	1984	22,833	9,023	6,660	6,660	6,015	25,782	24,950	24,735	23,937	29,778	29,778	24,950	235,099	0
	BN	1985	21,881	0	0	25,782	20,623	25,782	28,817	25,782	24,950	29,778	29,778	23,937	257,109	1985	21,881	0	0	25,782	20,623	25,782	28,817	25,782	24,950	29,778	29,778	23,937	257,109	0
	w	1986	21,881	18,413	12,368	19,027	6,015	6,660	14,731	25,782	24,950	29,778	29,778	23,937	233,319	1986	21,881	18,413	12,368	19,027	6,015	6,660	14,731	25,782	24,950	29,778	29,778	23,937	233,319	0
	С	1987	17,124	13,810	17,124	17,124	15,467	25,782	26,239	25,782	24,950	29,778	29,778	24,950	267,909	1987	17,124	13,810	17,124	17,124	15,467	25,782	26,239	25,782	24,950	29,778	29,778	24,950	267,909	0
	C	1988	21,881	16,572	12,368	19,027	17,186	25,782	27,620	25,782	24,950	27,589	26,638	21,175	266,571	1988	21,881	16,572	12,368	19,027	17,186	25,782	27,620	25,782	24,950	27,589	26,638	21,175	266,571	1
	BN	1989	19,027	16,572	15,222	15,222	13,749	25,782	23,937	22,833	22,096	28,541	25,782	21,175	249,937	1989	19,027	16,572	15,222	15,222	13,749	25,782	23,937	22,833	22,096	28,541	25,782	21,175	249,937	1
	D	1990	19,027	0	0	25,782	20,623	25,782	28,817	22,833	22,096	28,541	25,782 25,782	21,175	240,458	1990	19,027	0	0	25,782	20,623	25,782	28,817	22,833	22,096	28,541 27.589	25,782 25,782	21,175	240,458	1
	BN	1991	19,027	16,572	12,891	17,124	15,467	19,979	22,096	22,833	22,096	27,589		21,175	242,632 234,590	1991	19,027	16,572	12,891	17,124	15,467	19,979	22,096	22,833	22,096	27,589	- , -	21,175	242,632	1
	AN	1992 1993	19,027 19,027	16,572 16,572	15,222 12,368	15,222 6,660	6,015 6,015	21,881 6,660	21,175 16,572	22,833 21,881	22,096 21,175	27,589 29,778	25,782 29,778	21,175 24,950	234,590 211,435	1992 1993	19,027 19,027	16,572 16,572	15,222 12,368	15,222 6,660	6,015 6,015	21,881 6,660	21,175 16,572	22,833 21,881	22,096 21,175	27,589 29,778	25,782 29,778	21,175 24,950	234,590 211,435	1
	D	1993	17,124	13,810	12,308	17,124	13,749	24,735	24,950	25,782	24,950	29,778	29,778	24,950	263,855	1994	17,124	13,810	12,508	17,124	13,749	24,735	24,950	25,782	24,950	29,778	29,778	24,950	263,855	0
	w	1995	19,979	15,610	17,124	12.368	6,874	6,660	13,810	22,833	24,930	29,778	29,778	24,950	189,124	1995	19,979	15,610	17,124	12,368	6,874	6.660	13,810	22,833	24,930	29,778	29,778	24,950	189,124	0
	AN	1996	17,124	13,810	12,891	6.660	6,015	6.660	18,413	24,735	23,937	29,778	29,778	24,950	214,751	1996	17,124	13,810	12,891	6,660	6,015	6,660	18,413	24,735	23,937	29,778	29,778	24,950	214,751	0
	w	1997	17,124	7,365	6,660	6,660	6,015	19,979	23,937	25,782	24,950	29,778	29,778	23,937	221,964	1997	17,124	7,365	6,660	6,660	6,015	19,979	23,937	25,782	24,950	29,778	29,778	23,937	221,964	0
	w	1998	21,881	11,969	12.368	6,660	6.015	6.660	6,445	19,979	19.334	29,778	29,778	24,950	195.814	1998	21,881	11,969	12,368	6,660	6.015	6.660	6.445	19,979	19.334	29,778	29,778	24,950	195.814	0
	AN	1999	17,124	13.810	15,222	14,270	6,015	12.368	13,810	24,735	23.937	29,778	29,778	23,937	224,785	1999	17,124	13,810	15,222	14.270	6,015	12.368	13.810	24,735	23,937	29,778	29,778	23,937	224,785	0
	N	2000	17.124	,0	,	25,782	11.171	6.660	23.937	25,782	24,950	29,778	29,778	23,937	218.898	2000	17.124	0	,	25,782	11.171	6.660	23.937	25,782	24,950	29,778	29,778	23.937	218,898	0
	BN	2001	19,027	13,810	12,368	19,027	12,889	17,124	22,096	25,782	24,950	29,778	29,778	23,937	250,566	2001	19,027	13,810	12,368	19,027	12,889	17,124	22,096	25,782	24,950	29,778	29,778	23,937	250,566	0
	N	2002	17,124	13,810	9,323	15,222	13,749	24,735	23,937	25,782	24,950	29,778	29,778	24,950	253,138	2002	17,124	13,810	9,323	15,222	13,749	24,735	23,937	25,782	24,950	29,778	29,778	24,950	253,138	0
	N	2003	19,979	14,731	6,660	6,660	6,015	25,782	24,950	22,833	22,096	29,778	29,778	24,950	234,209	2003	19,979	14,731	6,660	6,660	6,015	25,782	24,950	22,833	22,096	29,778	29,778	24,950	234,209	0
	BN	2004	21,881	13,810	14,270	15,222	6,015	19,027	24,950	25,782	24,950	29,778	29,778	23,937	249,400	2004	21,881	13,810	14,270	15,222	6,015	19,027	24,950	25,782	24,950	29,778	29,778	23,937	249,400	0
	w	2005	19,979	0	0	12,368	6,874	6,660	13,810	24,735	23,937	29,778	29,778	24,950	192,868	2005	19,979	0	0	12,368	6,874	6,660	13,810	24,735	23,937	29,778	29,778	24,950	192,868	0
	w	2006	17,124	13,810	10,465	6,660	6,015	9,323	6,445	22,833	22,096	29,778	29,778	24,950	199,276	2006	17,124	13,810	10,465	6,660	6,015	9,323	6,445	22,833	22,096	29,778	29,778	24,950	199,276	0
	D	2007	19,027	13,810	15,222	17,124	15,467	24,735	23,937	25,782	24,950	29,778	29,778	24,950	264,561	2007	19,027	13,810	15,222	17,124	15,467	24,735	23,937	25,782	24,950	29,778	29,778	24,950	264,561	0
	BN	2008	21,881	16,572	12,368	9,323	6,015	21,881	23,937	25,782	24,950	29,778	29,778	24,950	247,215	2008	21,881	16,572	12,368	9,323	6,015	21,881	23,937	25,782	24,950	29,778	29,778	24,950	247,215	0
	N	2009	19,979	14,731	17,124	17,124	6,015	6,660	23,937	25,782	24,950	29,778	29,778	23,937	239,795	2009	19,979	14,731	17,124	17,124	6,015	6,660	23,937	25,782	24,950	29,778	29,778	23,937	239,795	0
1		Ave	19,174	11,586	10,056	13,763	9,761	16,390	19,886	24,296	23,512	29,490	29,185	24,138	231,238	Ave	19,174	11,586	10,056	13,763	9,761	16,390	19,886	24,296	23,512	29,490	29,185	24,138	231,238	
1																														

Figure 5.1-6. San Joaquin Pipeline Diversions of City and County of San Francisco.

5.2 WaterBankRel Worksheet

This worksheet (WaterBankRel) provides for entry of daily supplemental releases from the CCSF System. Without any other manual intervention the Model will direct releases from the CCSF System under a "hold-unless-need-to-release" protocol. Additional releases greater than provided by the default protocol may be needed. An example of such a need is during periods when CCSF System operations would otherwise deplete the Water Bank Account to a point of a "negative" balance.

The manual adjustment to releases from the CCSF System is provided to allow the user to "pull" additional water from the CCSF System as supplemental inflow to Don Pedro Reservoir. A single entry is established that will first pull water from Lake Lloyd so that water supply is preserved in the Hetch Hetchy Reservoir system for diversion to the SJPL. At a point when such supplemental releases strain Lake Lloyd storage, the supplemental releases are directed to Hetch Hetchy Reservoir. The supplemental release is directed from a reservoir at a point in logic after the default protocol releases occur. Thus, the release occurs in addition to what operation is already occurring by default. Such a release can affect the following day's default operation or previous periods' operations, thus results require review to determine if the user's desired result occurs. This worksheet is employed when Switch UI 3.10 directs the use of this suggested method for defining daily supplemental releases (UI 3.10 = 1).

Shown in Figure 5.2-1 is a snapshot of the worksheet. The worksheet provides the daily accounting of the Water Bank Account Balance for the Model. Information ported from other worksheets of the Model into this worksheet is Don Pedro Reservoir inflow (Column E) and the unimpaired flow at La Grange (Column F). These data and the protocols associated with Fourth Agreement Water Bank Balance accounting (Columns G through Column O) derive the daily credit or debit of CCSF and then the daily balance of the Water Bank Account (Column M).

For purposes of the FERC investigation, the protocols of Fourth Agreement Water Bank Accounting have been amended to incorporate a hypothetical implementation of "shared responsibility" for incremental increases in FERC-required flows for the Tuolumne River. If running the option with shared responsibility has been selected (worksheet UserInput Switch UI 1.31 = 1), the incremental increase in FERC-required flows is determined by the daily difference between the current 1995 FERC Settlement requirements and scenario-required minimum flows. This computation occurs in worksheet LaGrangeSchedule with information regarding the scenario-required flows directed through worksheet UserInput. Approximately fifty-two percent (51.7121%) of the incremental difference between the flow schedules is assigned as CCSF's responsibility and is ported into the worksheet in Column Q as a "debit". This debit then enters the current protocols of Fourth Agreement Water Bank Accounting at Column J, and subsequently contributes to the determination of the daily Water Bank Account Balance (Column M).

Water Bank Account Balances which are less than zero ("negative") are highlighted, and the minimum balance, whether negative or positive, is reported in Cell M14. When a negative balance occurs, the user is to enter into Column T (WB Supplemental Release) a volume of release needed to maintain the Water Bank Account Balance at, or greater than zero. The Model

will first direct the supplemental release to Lake Lloyd, and continue releases until storage at Lake Lloyd is drawn to a specified 45,000 acre-feet minimum level (shown in Cell Q10 and entered at worksheet CCSF Switch 3.00). Subsequent supplemental releases will be drawn from Hetch Hetchy Reservoir any time storage is less than the Lake Lloyd minimum. The result of entering the supplemental release will cause a recalculation of the entire Model with results refreshed in the worksheet. Lake Lloyd, Hetch Hetchy Reservoir and Don Pedro Reservoir storage is ported from other worksheets to provide the status of their storage as supplemental releases are entered.

1	А	В	С	D	F	F	G	Н	1	1	ĸ	1	М	N	0	p	Q	R	S	т	U	V	W	Х
1	-	5	1		San Franci				e Comput:	tion and S	upplemen	t Release			5		a		5		5			^
2	Unit Title		2							AF			AF		AF		AF			AF				
	Parameter	Title	3													r Bank Car	Credit Adj fo				mental Re	lease		
4																	Advice							
5	Acre-foot to	CFS conversio	on		From	From																		
	livide by :	1.983471			DonPedro	Hydrology		Warninas																
7]																	
8																								
9																	(UI 1.31)			(UI 3.10)	Yes, this r	nethod is l	being used	
10																	0			1	Min Lloy	d Storage	Min	Min
11																	(0) N, (1) Y				for	WB	103,852	84,135
12																	- Debit				Call (ac	re-feet)	Min	Min
13							•					Max	740,000				+ Credit				45,	000	Non 76-77	Non 76-77
14												Min	0			Sum:	0		Sum:	171,708	171,708	0	103,852	114,720
15								S	F Water B	ank Accour	nt Balance	Calculatio	n				La Grange			Supp	lemental F	Release an	d Storage (Check
16							Fourth	Daily	SF	SF C/D	SF Gross	SF WB	SF Net	SF Share	SF Max		Credit Adj			WB	1st Call	2nd Call		
17	Month				DP	La Grange	Agree	Districts'	Credit/	w/	WB	Evap	WB	RFlood	WB	WB	in SF			Supp	Lloyd	нн	Lloyd	нн
18	Index	Date	Day	Days	Inflow	UF	Check	Entitle	Debit	Credit Adj	Balance	Losses	Balance	DP	Balance	Neg Flag	WB	Mark	Mark	Release	Release	Release	Storage	Storage
19					CFS	CFS	CFS	CFS	CFS	AF	AF	AF	570,000	AF	AF	AF	AF			AF	AF	AF	AF	AF
20		10/1/1970		31		159	2,416	159	163	324		48	570,000	0		C	0			0	0	0		
21		10/2/1970		31		55	2,416	55	398	790	570,790	48	570,000	0	570,000	0	0			0	0	0	200,080	
22		10/3/1970		31		265	2,416	265	276	548	570,548	48	570,000	0	570,000	C	0			0	0	0	200,090	
23		10/4/1970		31		-166	2,416	-166	791	1,569	571,569	48	570,000	0	570,000	0	0			0	0	0	199,278	
24		10/5/1970		31		180	2,416	180	-105	-208	569,792		569,744	0	570,000	0	0			0	0	0	199,896	
25		10/6/1970 10/7/1970		31		92	2,416	92	383	760	570,504	48	570,000	0	570,000	0	0			0	0	0	199,781	
26 27		10/7/1970		31		150 153	2,416		376	746		48	570,000	0			0			0	0	0	199,660	
27		10/8/19/0		31 31	209 264	155	2,416 2,416	153 146	56 118	111 234	570,111 570,234	48	570,000 570,000	0	570,000 570,000		0					0	199,746 199,746	
20		10/10/1970		31	204	99	2,410	99	110	234	570,234		570,000	0	570,000		0					0	199,677	
30		10/11/1970		31		293	2,410		327	649	570,649	49	570,000	0	570,000		0			0	ů	0	199,112	
31		10/12/1970		31		-285	2,416	-285	345	684	570,684	49	570,000	0	570,000	0	0			0	0	0	199,319	
32		10/13/1970		31		335	2,416	335	-306	-607	569,393	48	569,345	0	570,000	0	0			0	0	0	199,568	
33		10/14/1970		31		-15	2,416	-15	207	411		48	569,707	o o	570,000		0			0	ő	0	199,310	
34		10/15/1970		31		135	2,416	135	46	91		48	569,749	0	570,000	0	0			0	0	0	199,262	
35		10/16/1970		31		210	2,416		183	363	570,112		570,000	0			0			0	Ő	0	199,172	
36	1970.10	10/17/1970	s	31	606	439	2,416	439	167	331	570,331	49	570,000	0	570,000	0	0			0	0	0	199,106	
37	1970.10	10/18/1970	s	31	710	407	2,416	407	303	601	570,601	49	570,000	0		0	0			0	0	0	198,622	
38	1970.10	10/19/1970	м	31	-115	20	2,416	20	-135	-268		49	569,684	0		C	0			0	0	0	199,115	
39	1970.10	10/20/1970	т	31	318	130	2,416	130	188	373		49	570,000	0		0	0			0	0	0	199,014	234,169
.		5.0	-		XX7 - 4	-	1.7																	

Figure 5.2-1. WaterBankRel Worksheet .

Warnings and advice are provided in the worksheet when several conditions occur. The snapshots below illustrate the occurrence of these conditions. A warning has been provided (Figure 5.2-2) that a reservoir has likely been depleted by the current operation assumptions. In this particular example, Tuolumne River minimum flows were increased with responsibility shared with CCSF, and a set of supplemental releases were established. In this iteration of results it is discovered in Column X (Hetch Hetchy Reservoir storage) an error (reported as "#N/A") on August 26, 1992 has occurred in the Model. By review of the previous day's storage results for Lake Lloyd (Column W), Hetch Hetchy Reservoir (Column X) and Don Pedro Reservoir (Column Y), and the rate of depletion for each of these reservoirs, it is concluded that Hetch Hetchy Reservoir likely drained on August 26 and thus crashed the Model. Although noted, a negative Water Bank Account Balance (Column M) will not cause the Model to crash. To remedy the condition, the user uses worksheet UserInput to revise (lower) SJPL diversions from Hetch Hetchy Reservoir (UI 4.10 and UI 4.20) and retain water in Hetch Hetchy Reservoir for release. If Don Pedro Reservoir storage was the culprit of causing the Model to crash, the user uses worksheet UserInput to revise (lower) MID and TID canal diversions (UI 2.10, UI 2.20 and UI 2.30 to retain water in Don Pedro Reservoir for release. Alternatively, the user could reduce

- F	50100		5																						
	Α	В	С	D	E	F	G	н	1.1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y
1			1		San Franci	sco Water	Bank Acco	unt Balanc	e Comput	ation and S	upplemen	t Release													
2	Unit Title		2		CFS	CFS	CFS	CFS	CFS	AF		AF	AF		AF		AF			AF					
3	Parameter	Title	3		DP Inflow	La Grange	Fourth Ag	Districts' E	SF Credit,	SF Credit/	Debit w/ C	SF WB Eva	SF Water	Bank Balan	Max Wate	er Bank Cap	Credit Adj fo			SF Supple	mental Rel	ease			
4																	Advice								
5	Acre-foot to	CFS conversio	on		From	From											#N/A								
	divide by :	1.983471			DonPedro	Hydrology		Warnings									#N/A								
7						,			Warnina:	Your have	likely drai	ned a rese	rvoir, chec	k reservoir	s.	1	#N/A								
8									#N/A	#N/A	,		,												
9										#N/A					(UI 1.31)			(UL3.10)	Yes, this n	nethod is h	eing used				
10									#N/A	#N/A						1			1	Min Lloy		Min	Min	Min	
11										#N/A						(0) N, (1) Y			_	WB Call (24,474	#N/A	#N/A	
12																- Debit				(acre-		Min	Min	Min	
13												Мах	#N/A				+ Credit				45,0		Non76-77	Non76-77	Non76-77
14												Min	#N/A			Sum:			Sum:	1,197,522				#N/A	#N/A
15				- t					E Water P	lank Accour	t Balance	Calculatio					La Grange				Suppleme				
16				ŀ			Fourth	Daily	SE	SF C/D	SF Gross	SF WB	SF Net	SF Share	SF Max		Credit Adi			WB	1st Call	2nd Call		-0	
17	Month				DP	La Grange		Districts'	Credit/	w/	WB	Evap	WB	RFlood	WB	WB	in SF			Supp	Llovd	HH	Llovd	нн	DP
18	Index	Date	Day D	ave	Inflow	UF	Check	Entitle	Debit	Credit Adi		Losses	Balance	DP	Balance		WB	Mark	Mark	Release	Release	Release	Storage	Storage	Storage
19	mack	Dute			CFS	CFS	CFS	CFS	CFS	AF	AF	AF	570,000	AF	AF	AF	AF			AF	AF	AF	AF	AF	AF
8018	1992.08	8/24/1992	м	31	205	5	2.416		200		-122,421	0	-122,421	0		-396				0	0	0	30,461	1,488	528,302
8019		8/25/1992		31	445	28					-121,594	0	-121,594	i ő	570,000	-827	ő			0	0	0	30,065	262	526,440
8020		8/26/1992		31	#N/A	201				#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0			0	0	0	29,709		#N/A
8021		8/27/1992		31	#N/A	104				#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0			0	0	0			#N/A
0021	1772.00	0/2//1992		31	/A	104	2,410	104			my/A		mq/A	may A		ma/A	v			0	0	0	23,370	mag A	ms/A

the scenario's designated minimum flow requirement, which would change flow needed from the upstream systems.

Figure 5.2-2. Example 1: A Reservoir Empties and the Model Crashes.

A second example of warning is shown in Figure 5.2-3, and advises that the Water Bank Account Balance is negative for one or more days of the scenario. In this instance, all Model reservoirs are operating within a viable operation (the Model did not crash due an emptying reservoir); however, the objective to maintain a positive Water Bank Account Balance has been violated. Upon inspection of the results the user can find the first instance of violation and remedy the violation by entry into Column T an amount of release that maintains at least a zero balance in the Water Bank Account Balance. For the first day of violation the reported negative balance (e.g., -3,253 acre-feet) is needed as a supplemental release. The ensuing days of supplemental release are informed by Column P.

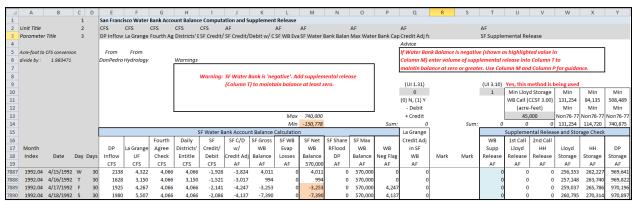


Figure 5.2-3. Example 2: Water Bank Balance is Negative.

It is possible that within the remedy of Example 2 the error exemplified by Example 1 may occur as Hetch Hetchy Reservoir may be drained through the efforts of maintaining a positive Water Bank Account Balance. At that point, the procedures of Example 1 will be required and the values already derived for supplemental releases may need to be revisited and possibly changed.

5.3 Control Worksheet

This worksheet (Control) provides an interface for entering assumptions for reservoir operations and several facility characteristics of District and CCSF facilities. The worksheet is described below.

5.3.1 Contents Description

This section (Figure 5.3-1) provides an index to the contents of this worksheet (Control).

5.3.2 Section 1: Don Pedro Reservoir and District Facilities -Reservoir Management, Preferred Storage Target and Drawdown, Modesto Flood Control Objective, Snowmelt Runoff, and Storage Constraints

This section (Figure 5.3-2) describes the parameters that provide guidance to the management of Don Pedro Reservoir storage and provides entry of several parameters that advise reservoir operations. ACOE and preferred reservoir storage guidance is described. User specified values for specific storage targets are input in Section 4 of this worksheet. The maximum targeted flood flow in the Tuolumne River at Modesto (below Dry Creek) is entered at C 1.00. Releases to the Tuolumne River will be constrained to not exceed this flow level when reservoir space is available in Don Pedro Reservoir to defer releases. Guidance is also provided for the release of anticipated runoff during the snowmelt runoff season. Values entered at C 1.10, C 1.11 and C 1.12 advise the amount of projected excess runoff (from the date of forecast through June) to be released during April, May and June. For instance, the value entered at C 1.10 (30 percent) advises the Model to release 30 percent of the excess runoff volume forecasted to occur during April through June during April. The Model estimates the total excess runoff volume as being the projected inflow to Don Pedro Reservoir less projected canal diversions, reservoir evaporation and minimum Tuolumne River flow requirements, with an objective to fill Don Pedro Reservoir at the end of June. An entry at C 1.20 directs the Model to cease the simulation of power generation at Don Pedro Powerhouse when reservoir storage is below the value. A warning occurs when Don Pedro Reservoir storage is less than the value. The warning informs the study that the reservoir is being simulated below dead pool. The study should be revised through inputs in worksheet UserInput to remedy reservoir storage that is less than dead pool. The entry at C 1.21 informs the Model of the maximum flow through the Don Pedro powerhouse. Releases from Don Pedro Dam in excess of this value is labeled spill or bypassed at the dam.

5.3.3 FERC Minimum Flows

This section (Figure 5.3-3) defines the 1995 FERC minimum flow requirements. Values are entered (C 1.30) for each defined flow period by year type, consistent with the FERC order issued July 31, 1996. Seven year types are defined based on the San Joaquin Basin 60-20-20 water supply index. The sequence year of the flow schedule begins in April and continues through the following March. The water supply index of each year of the simulation period is found in worksheet 602020, and the projection method of the index is defined at C 1.50. For the Test Case condition, the historical actual 60-20-20 index is used. The volume of water interpolated between annual schedules is distributed among April and May in proportion to the values provided at C 1.40 (April) and C 1.41 (May). The total volume of water designated for April and May is distributed daily during April and May is directed by C 1.60. If directed to use an equal distribution of the volume of flow during April and May, C 1.60 is set as 1. If C 1.60 is set as 2, two 7-day pulse flows will occur with the remaining volume evenly spread over the

remaining days of the months. The pattern of these schedules can be modified in worksheet LaGrangeSchedule.

5.3.4 Test Case District Canal Demands

This section of parameters (Figure 5.3-4) contributes to the computation of District canal demands. The values entered at C 1.70 for Modesto Irrigation District and at C 1.80 for Turlock Irrigation District are utilized by worksheet DailyCanalsCompute in the projection of daily canal demands for the simulation period. These parameters represent various components of water supplies and disposition that result in the need for canal diversion. These components are combined with the projected demand for applied water associated with lands within the Districts. The projected demand for applied water is provided to the model in worksheet DailyCanalsCompute, and is adjusted by the turnout delivery factor entered in C 1.70 and C 1.80, which adjusts for applied water not associated with immediate consumptive use such as pre-irrigation and groundwater recharge. The computation of daily canal demand is processed by parsing the monthly values of C 1.70 and C 1.80 evenly across the days of a month and combining them with the monthly value of applied water that has been parsed daily in a pattern reflective of recent historical daily diversions for the canals.

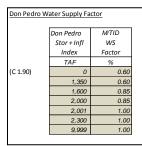
5.3.5 Don Pedro Water Supply Factor

The Don Pedro Water Supply Factor directs the reduction of District canal diversions during periods of anticipated limited water supply. The values at C 1.90 (Figure 5.3-5) provide the model with a relationship between water availability at Don Pedro Reservoir and advised canal diversions. The parameters of the relationship is an index of water availability which is computed as the storage in Don Pedro Reservoir at the end of March plus the projected inflow into Don Pedro Reservoir for April through July, and the water supply factor which is applied to projected demand for applied water described above. A water supply factor of 1.00 will provide a diversion equal to projected canal demand (full demand). A water supply factor less than 1.00 will reduce the canal diversion to less than full canal demand.

Contents: Section 1 - Don Pedro Reservoir and District Facilities Section 2 - CCSF Facilities Section 3 - Don Pedro Reservoir and CCSF Reservoir Elevation/Storage/Area and Evaporation Factors Section 4 - Don Pedro Reservoir Flood Control Reservation Space and Discretionary Target

Figure 5.3-1. Contents Description.

Section 1 - I	Oon Pedro Reservoir and District Facilities										
Reservoir N	anagement										
<u>Rainflood re</u>	servoir reservation space according to ACOE manual. "Flood control reservoir increases uniformly at a rate of 11,700 acre-feet per day from zero requirement on September 8 to the maximum reservation of 340,000 acre-feet by October 7. The reservation is maintained at 340,000 acre-feet through April 27 after which, unless additional reservation is indicated by the snowmelt		2,500,000 2,000,000			Don Pedro	o Reservoir	r Storage G	uidance		-
	parameters, it will decrease uniformaly at a rate of 9,200 acre-feet per day to zero requirement by June 3."		4) 80 1,500,000						- 5		 Preferred Storage Target ACOE Rainflood Objective
Preferred S											-
	ACOE through June 30. Target 1,906,000 acre-feet for July 31, 1,782,000 acre-feet August 31, and 1,692,000 acre-feet for September 30. UCOE thereafter.		0 + 1/1	1 2/1 3/1	4/1 5/1	6/1	7/1 8/	/1 9/1	10/1 11	/1 12/1	-
Modesto flo	iod control objective		Reservoir Storage C	Constraints/Objectiv	ves						
(C 1.00)	9,000 cfs. Target flow not to exceed in Tuolumne River below Modesto.	(C 1.20) (C 1.21)	308,960 acre-j	feet Maximum reser feet dead pool, cuto aximum Don Pedro	off of generation		/no release	*			
Snowmelt r	elease forecast parameters	. ,									
	90% exceedence DWR forecast of watershed runoff for April 1 and May 1 Historical watershed runoff for June 1		How	Model will not crash wever, to conform w sumptions to mainta	vith operation	al limitations	the user is	to modify in	put		
(C 1.10) (C 1.11) (C 1.12)	Release of forecasted excess runoff 30 percent of April - June excess runoff during April 50 percent of May - June excess runoff during May 100 percent of June excess runoff during June										


Figure 5.3-2. Section 1: Don Pedro Reservoir and District Facilities -Reservoir Management, Preferred Storage Target and Drawdown, Modesto Flood Control Objective, Snowmelt Runoff, and Storage Constraints.

edules Year Type	1	2	3	4	5	6	7		April - May di	listribution of spring migration volume
Oct 1-15 (CFS)	100	100	150	150	180	200	300	(C 1.40)		parts (days) during April
Oct 16-31 (CFS)	150	150	150	150	180	175	300	(C 1.41)		parts (days) during May
Total Base (AF)	7,736	7,736	9,223	9,223	11,068	11,504	18,447	(01.11)		parts total during April and May
Attraction (AF)	0	0	0	0	1,676	1,736	5,950			p
Total Oct (AF)	7,736	7,736	9,223	9,223	12,744	13,240	24,397		Forecast of S	an Joaquin River Index
Nov (CFS)	150	150	150	150	180	175	300	(C 1.50)	1	
AF	8,926	8,926	8,926	8,926	10,711	10,413	17,852		1	Actual
Dec (CFS)	150	150	150	150	180	175	300		2	90% Exc.
AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447		3	75% Exc.
Jan (CFS)	150	150	150	150	180	175	300		4	Med.
AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447		5	10% Exc.
Feb (CFS)	150	150	150	150	180	175	300			
AF	8,331	8,331	8,331	8,331	9,997	9,719	16,661		April - May de	laily parsing of monthly volume of flow
Mar (CFS)	150	150	150	150	180	175	300	(C 1.60)	2	
AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447		1	Even
Apr (CFS)	150	150	150	150	180	175	300		2	2-Pulse
AF	8,926	8,926	8,926	8,926	10,711	10,413	17,852			
May (CFS)	150	150	150	150	180	175	300			FERC Flow Requirements
AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447			Daily Parsing of Monthly Volume
Migration Flow										bany raising or wonany volance
AF	11,091	20,091	32,619	37,060	35,920	60,027	89,882		€ 0.080 € 0.070	
Jun (CFS)	50	50	50	75	75	75	250		0.060	
AF	2,975	2,975	2,975	4,463	4,463	4,463	14,876		\$ 0.050	
Jul (CFS)	50	50	50	75	75	75	250		튣 0.040	Option 1
AF	3,074	3,074	3,074	4,612	4,612	4,612	15,372		§ 0.030	Option 2
Aug (CFS)	50	50	50	75	75	75	250		5 0.020 + % 0.010 +	Option 2
AF	3,074	3,074	3,074	4,612	4,612	4,612	15,372			
Sep (CFS)	50	50	50	75	75	75	250		E , PS	and shad shad trad to the tweet was and shad trade trade to the trade
AF	2,975	2,975	2,975	4,463	4,463	4,463	14,876		- ×*-	ర్ స్

Figure 5.3-3. FERC Minimum Flows.

1.101 Nominal belowery locator Canal Operation belowery locator Canal Operation belowery locator Canal Operation belowery locator Nominal Operation belowery locator Modesto Manicipal Montional locator Modesto Manicipal Montional locator Modesto Manicipal Montional locator Nominal Modesto Manicipal Montional locator Modesto Manicipal Montional locator Nominal Modesto Manicipal Montional locator Modesto Manicipal Montional locator Nominal Montional Montional locator Modesto Montional Montional locator Nominal Montional Montional locator Montional Montional Montional locator Montional Montional Montional locator Nominal Montional Montional locator Nominal Montocator Nominal Montional locat															
Internal Nominal Delivery Betweey Canal Splis Canal Splis Canal Losses bwit Splis Canal Models Nominal Burger Burger Dises Modelse Burger Dises Modelse Dises Modelse Dises Modelse Dises Modelse Dises Modelse Dises	Test Case Ca	nal Demands													
Internal Nominal Delivery Betweey Canal Splis Canal Splis Canal Losses bwit Splis Canal Models Nominal Burger Burger Dises Modelse Burger Dises Modelse Dises Modelse Dises Modelse Dises Modelse Dises Modelse Dises															
No Image of the second se		Modesto Irriga	tion District			r					-				
International state Eventsey of the splits Splits Modesta Intercend MD Cond Mulcipal Target Disarde Storage Change Change Change Chang				Nominal	Canal	Canal	Canal			Mod Res	Мо	odesto Reservo	pir		
Interpretation Factor Promping Profile Char Profile Promping Profile Char Profile Promping Profile Char Profile Promping Profile Char Profile Profile Profile <td></td> <td></td> <td>Turnout</td> <td>Private</td> <td>Operation</td> <td>Operation</td> <td>Losses blw</td> <td></td> <td>Nominal</td> <td>& Upper</td> <td></td> <td></td> <td>Target</td> <td>March TO Fact</td> <td>tor</td>			Turnout	Private	Operation	Operation	Losses blw		Nominal	& Upper			Target	March TO Fact	tor
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Delivery	GW	Spills	Spills	Modesto	Intercptd	MID GW	Canal	Municipal	Target	Storage	TO Del	
1.70) Ion 35.0 0.0 2.0 2.0 0.1 0.0 0.0 0.0 2.3 17.0 2.0 0.0 9.9 65 Mar 65.0 1.0 1.0 3.0 6.0 0.0 0.0 2.3 18.0 1.0 3.0 6.0 3.3 2.9 2.7 18.0 0.0 3.0 6.0 3.3 2.9 2.7 19.0 1.0 3.0 6.0 6.6 0.0 2.3 2.9 2.7 19.0 1.0 3.0 6.5 0.6 1.1 2.3 3.3 0.0 0.0 0.0 3.0 6.0 0.0 2.3 4.3 3.2 2.00 0.0 3.0 6.5 0.6 1.0 2.3 4.3 3.2 2.00 0.0 0.0 2.0 2.0 0.0 0.0 0.0 2.0 0.0			Factor	Pumping	Critical	Non-crit	Reservoir	Flows	Pumping	Losses	Delivery	Storage	Change	Fac Break	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Month	%	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	Point	Factor %
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L.70)	Jan	35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	17.0	2.0	0	65
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Feb	35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	18.0	1.0	9.9	65
$ 1.80) \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mar	65.0	1.0	1.0	3.0	0.6	0.9	1.0	2.0	2.7	18.0	0.0	13.2	65
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Apr	70.0	2.0	3.0	6.0	0.6	0.9	2.3	2.9	2.7	19.0	1.0	20	65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		May	85.0	3.0	4.0	6.5	0.6	1.2	2.3	3.9	3.0	20.0	1.0	9999	65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			85.0									20.0	0.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			77.5									21.0	1.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aua	70.0	4.0	4.9	7.0	0.6	1.4	2.4	4.9	3.3	22.0	1.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			65.0	2.0	5.0	7.0	0.6	1.2	2.3	4.2	3.3	20.0	-2.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			40.0	1.0						2.0		17.0			
Dec 35.0 0.0 2.0 0.1 0.0 0.0 2.5 15.0 0.0 Total 21.0 35.7 57.4 5.4 8.5 17.3 31.1 34.5 1 Turlock Inigation District Turlock Inigation District Nominal Canal Canal Canal Canal Turlock Lake Torget Storage Change															
Total 21.0 35.7 57.4 5.4 8.5 17.3 31.1 34.5 Turlock Irrigation District Turlock Irrigation District Nominal Delivery Canal Spills Canal Spills Canal Spills Canal Spills Canal Interceptid Turlock Lk Turlock Lake March TO Factor Month % TAF T			35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.5	15.0	0.0		
Turlock Irrigation District Turlock Irrigation District Turlock Irrigation District Turnout Nominal Private Canal Operation Canal Desizes bw Numinal Turlock Turlock Lk Turlock Lake March TO Factor Month % TAF <				21.0	35.7			8.5	17.3	31.1					
Nominal Naminal Canal Canal Canal Canal Canal Canal Delivery Turlock Lake Delivery Factor Private Operation Spills Difference Turlock Naminal & Upper Target Storage Change Month % TAF															
Ison Turnout Delivery Factor Private W Operation Spills Operation Spills Losses blw Turlock Intercptid Flows Nominal TDGW & Upper Conal Target Delivery Storage Charge March TO Factor Month % TAF TAF<		Turlock Irrigat	ion District												
Delivery Foctor GW Spills Spills Turlock Intercptd TID GW Canal Target Storage Change Month % TAF		l i		Nominal	Canal	Canal	Canal			Turlock Lk		Turlock Lake			
Delivery Foctor GW Spills Spills Turlock Intercptd TID GW Canal Target Storage Change Month % TAF			Turnout	Private	Operation	Operation	Losses blw		Nominal	& Upper			Taraet	March TO Fact	tor
Inclusion Factor Pumping Critical Non-crit Lake Flows Pumping Losses Delivery Storage Change Factore Point Factore Participan Cases Delivery Storage Change Factore Point Factore Point Factore Participan Cases Delivery Storage Change Participan Factore Point Fact								Intercotd	TID GW			Taraet	5	TO Del	
Month % TAF TAF <td></td> <td></td> <td>Factor</td> <td>Pumpina</td> <td>Critical</td> <td>Non-crit</td> <td>Lake</td> <td></td> <td>Pumpina</td> <td>Losses</td> <td>Deliverv</td> <td>5</td> <td>5</td> <td>Fac Break</td> <td></td>			Factor	Pumpina	Critical	Non-crit	Lake		Pumpina	Losses	Deliverv	5	5	Fac Break	
Jan 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 18.0 5.0 Feb 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 25.0 7.0 Mar 65 1.2 3.0 3.0 4.5 0.0 4.1 1.0 0.0 30.0 5.0 Apr 57.5 2.4 5.1 6.3 4.5 0.0 8.0 6.6 0.0 30.0 0.0 40 65 May 85 3.6 4.6 6.7 4.5 0.0 10.3 7.7 0.0 32.0 0.0 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 40 65 60 40 65 60 40 65 60 65 60 </td <td></td> <td>Month</td> <td>%</td> <td></td> <td>TAF</td> <td></td> <td>TAF</td> <td>TAF</td> <td></td> <td></td> <td>,</td> <td>5</td> <td></td> <td>Point</td> <td>Factor %</td>		Month	%		TAF		TAF	TAF			,	5		Point	Factor %
Feb 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 25.0 7.0 Mar 65 1.2 3.0 3.0 4.5 0.0 4.1 1.0 0.0 30.0 5.0 27.5 65 Apr 57.5 1.2 3.0 4.5 0.0 8.0 6.6 0.0 30.0 0.0 May 85 3.6 4.6 6.7 4.5 0.0 10.3 7.7 0.0 32.0 0.0 Jun 92.5 5.2 4.2 6.7 4.5 0.0 12.4 8.2 0.0 32.0 0.0 Jul 72.5 6.4 4.2 6.7 4.5 0.0 13.3 9.0 0.0 32.0 0.0 Aug 67.5 3.9 3.2 7.3 4.5 0.0 9.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0	1.80)		30	0.0	2.0	2.0	0.8	0.0			0.0	18.0		-	
Apr 57.5 2.4 5.1 6.3 4.5 0.0 8.0 6.6 0.0 30.0 0.0 May 85 3.6 4.6 6.7 4.5 0.0 10.3 7.7 0.0 32.0 2.0 Jun 92.5 5.2 4.2 6.7 4.5 0.0 12.4 8.2 0.0 32.0 0.0 Jul 72.5 6.4 4.2 6.7 4.5 0.0 14.6 8.7 0.0 32.0 0.0 Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.3 2.0 0.0 Nov 30 0.0 2.0 0.8 0.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 13.0 0.0														19.8	
Apr 57.5 2.4 5.1 6.3 4.5 0.0 8.0 6.6 0.0 30.0 0.0 May 85 3.6 4.6 6.7 4.5 0.0 10.3 7.7 0.0 32.0 2.0 Jun 92.5 5.2 4.2 6.7 4.5 0.0 12.4 8.2 0.0 32.0 0.0 Jul 72.5 6.4 4.2 6.7 4.5 0.0 14.6 8.7 0.0 32.0 0.0 Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.0 2.0 -3.0 Oct 40 0.2 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 0.0 Nov 30 0.0 2.0 0.8 0.0 0.0 13.0 <td></td> <td>Mar</td> <td>65</td> <td>1.2</td> <td>3.0</td> <td>3.0</td> <td>4.5</td> <td>0.0</td> <td>4.1</td> <td>1.0</td> <td>0.0</td> <td>30.0</td> <td>5.0</td> <td>27.5</td> <td>65</td>		Mar	65	1.2	3.0	3.0	4.5	0.0	4.1	1.0	0.0	30.0	5.0	27.5	65
May 85 3.6 4.6 6.7 4.5 0.0 10.3 7.7 0.0 32.0 2.0 9999 65 Jun 92.5 5.2 4.2 6.7 4.5 0.0 12.4 8.2 0.0 32.0 0.0 Jul 72.5 6.4 2.6 7 4.5 0.0 14.6 8.7 0.0 32.0 0.0 Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.1 5.0 0.0 13.0 -0.0 Oct 40 2.4 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 0.0 Nov 30 0.0 2.0 0.8 0.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0		Apr	57.5	2.4	5.1	6.3		0.0	8.0			30.0	0.0	40	65
Jun 92.5 5.2 4.2 6.7 4.5 0.0 12.4 8.2 0.0 32.0 0.0 Jul 72.5 6.4 4.2 6.7 4.5 0.0 14.6 8.7 0.0 32.0 0.0 Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.1 5.0 0.0 27.0 -3.0 Oct 40 2.4 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 -14.0 Nov 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0		-			4.6			0.0	10.3			32.0	2.0	9999	
Jul 72.5 6.4 4.2 6.7 4.5 0.0 14.6 8.7 0.0 32.0 0.0 Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.1 5.0 0.0 27.0 -3.0 Oct 40 2.4 2.3 4.5 0.0 5.3 2.0 0.0 13.0 -14.0 Nov 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0		Jun	92.5	5.2	4.2	6.7	4.5	0.0	12.4	8.2	0.0	32.0	0.0		
Aug 62.5 6.2 4.0 7.3 4.5 0.0 13.3 9.0 0.0 30.0 -2.0 Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.1 5.0 0.0 27.0 -3.0 Oct 40 2.4 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 -14.0 Nov 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0															
Sep 67.5 3.9 3.2 7.3 4.5 0.0 9.1 5.0 0.0 27.0 -3.0 Oct 40 2.4 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 -14.0 Nov 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0															
Oct 40 2.4 2.3 7.3 4.5 0.0 5.3 2.0 0.0 13.0 -14.0 Nov 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0								0.0							
Nov 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0 Dec 30 0.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0															
Dec 30 0.0 2.0 2.0 0.8 0.0 0.0 1.0 0.0 13.0 0.0															
			30	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	13.0	0.0		
						-									

Figure 5.3-4. Test Case District Canal Demands.

The reservoir index method adds the end-of-March Don Pedro Reservoir storage to the projected April through July inflow to assess water availability for diversion.

Figure 5.3-5. Don Pedro Water Supply Factor.

5.3.6 Section 2: City and County of San Francisco Facilities - Hetch Hetchy Reservoir

This section (Figure 5.3-6) provides parameters that direct or advise the operation of Hetch Hetchy Reservoir. Minimum flow releases below Hetch Hetchy Reservoir are directed by C 2.00, C 2.01 and C 2.02. These parameters and schedules are consistent with the stipulations for the Canyon Power Project and the modifications thereof for Kirkwood Powerhouse Unit No. 3. The application of these flow schedules and the addition of 64 cfs to the minimum flow schedule below Hetch Hetchy Reservoir are embedded in model logic in worksheet CCSF.

Values entered at C 2.10 advise the management of reservoir storage throughout a year. The hard limit entered into C 2.10 directs the maximum allowed storage in Hetch Hetchy Reservoir at the end of each month. Model logic will not allow exceedence of these values and will release addition water from the facility if needed to not exceed the values. The soft target, also representing a value at the end of each month, when exceeded advises the Model to make additional releases in order to not exceed that reservoir storage. Model logic computes the storage exceedence, if any, every seventh day and advises a release in addition to minimum releases. The rate of this additional release is equal to the exceedence volume spread over seven days. For transitional months when the soft target value at the end of a month differs from a previous month, the transition in storage target is parsed equally within the days of the month.

Entries at C 2.20 through C 2.24 advise the amount of projected excess runoff (from the date of forecast through June) to be released during February, March, April, May and June. For instance, the value entered at C 2.20 (10 percent) advises the Model to release 10 percent of the excess runoff volume forecasted to occur during the February through June during February. The Model estimates the total excess runoff volume as being the projected inflow to Hetch Hetchy Reservoir less projected San Joaquin Pipeline diversions, deliveries to Groveland and Moccasin Fish Hatchery, reservoir evaporation and minimum flow requirements below Hetch Hetchy Reservoir, with an objective to fill Hetch Hetchy Reservoir at the end of June.

Entries at C 2.25 through C 2.29 work in concert with the advised snowmelt runoff releases, and limit the rate at which those releases will be made. The functionality of the limit provides an ability to manage releases in recognition of downstream facility protection, the efficiency of releases through power generation facilities and reservoir storage goals. The example of C 2.25 being set as 1,200 cfs for February results in the advised snowmelt release being limited to no more than that value regardless of the rate of release advised by the projection of excess runoff. These releases are in addition to the already established minimum releases described previously. C 2.30 and C 2.31 also affect the advisement of snowmelt runoff releases. C 2.30 limits the drawdown of Hetch Hetchy Reservoir for snowmelt runoff, and its value will limit the release to not lower Hetch Hetchy reservoir storage below such value. C 2.31 directs the storage goal for Hetch Hetchy Reservoir at the assumed fill date of the end of June.

5.3.7 Lake Lloyd

The section of parameters that direct or advise the operation of Lake Lloyd (Figure 5.3-7) is very similar in content and structure as the section just described for Hetch Hetchy Reservoir.

Minimum flow releases below Lake Lloyd are directed by C 2.40 and C 2.41. A single schedule of flow requirements is provided for Lake Lloyd and is consistent with the stipulations for the Cherry River Project. The application of the flow schedule is embedded in Model logic in worksheet CCSF. Entry of a value at C 2.41 provides a release from Lake Lloyd through Holm Powerhouse during the months of May through August, established as 950 cfs for four hours per day. The entry at C 2.41 also advises the maximum flow rate through Holm Powerhouse.

Values entered at C 2.50 advise the management of reservoir storage throughout a year. The hard limit entered into C 2.50 directs the maximum allowed storage in Lake Lloyd at the end of each month. Model logic will not allow exceedence of these values and will release addition water from the facility if needed to not exceed the values. The soft target, also representing a value at the end of each month, when exceeded advises the Model to make additional releases in order to not exceed that reservoir storage. Model logic computes the storage exceedence, if any, every seventh day and advises a release in addition to minimum releases. The rate of this additional release is equal to the exceedence volume spread over seven days. For transitional months when the soft target value at the end of a month differs from a previous month, the transition in storage target is parsed equally within the days of the month.

Entries at C 2.60 through C 2.64 advise the amount of projected excess runoff (from the date of forecast through June) to be released during February, March, April, May and June. The model estimates the total excess runoff volume as being the projected inflow to Lake Lloyd less reservoir evaporation, minimum flow requirements below Lake Lloyd and releases to Holm Powerhouse, with an objective to fill Lake Lloyd at the end of June.

Entries at C 2.65 through C 2.69 work in concert with the advised snowmelt runoff releases, and limit the rate at which those releases will be made. C 2.70 and C 2.71 also affect the advisement of snowmelt runoff releases. These releases are in addition to the already established minimum releases described previously. C 2.70 limits the drawdown of Lake Lloyd for snowmelt runoff, and its value will limit the release to not lower Lake Lloyd storage below such value. C 2.71 directs the storage goal for Lake Lloyd at the assumed fill date of the end of June.

5.3.8 Lake Eleanor

This section (Figure 5.3-8) provides parameters that direct or advise the operation of Lake Eleanor. Minimum flow releases below Lake Eleanor are directed by C 2.80. These flow schedules are consistent with the stipulations for the Cherry-Eleanor Pumping Station. The application of these flow schedules are embedded in Model logic in worksheet CCSF, and always assume the schedule associated with pumping. An entry at C 2.81 directs the maximum flow rate through the Eleanor-Cherry Diversion Tunnel. This value may limit the rate at which water can be transferred from Lake Eleanor to Lake Lloyd.

Values entered at C 2.90 advise the management of reservoir storage throughout a year. The hard limit entered into C 2.90 directs the maximum allowed storage in Lake Eleanor at the end of each month. Model logic will not allow exceedence of these values and will release addition water from the facility if needed to not exceed the values. The soft target, also representing a value at the end of each month, when exceeded advises the Model to make additional releases in order to

not exceed that reservoir storage. Model logic computes the storage exceedence, if any, every seventh day and advises a release in addition to minimum releases. The rate of this additional release is equal to the exceedence volume spread over seven days. For transitional months when the soft target value at the end of a month differs from a previous month, the transition in storage target is parsed equally within the days of the month.

Entries at C 2a.10 through C 2a.14 advise the amount of projected excess runoff (from the date of forecast through June) to be released during February, March, April, May and June. The model estimates the total excess runoff volume as being the projected inflow to Lake Eleanor less reservoir evaporation and minimum flow requirements below Lake Eleanor, with an objective to fill Lake Eleanor at the end of June.

Entries at C 2a.15 through C 2a.19 work in concert with the advised snowmelt runoff releases, and limit the rate at which those releases will be made. These releases are in addition to the already established minimum releases described previously. C 2a.20 and C 2a.21 also affect the advisement of snowmelt runoff releases. C 2a.20 limits the drawdown of Lake Eleanor for snowmelt runoff, and its value will limit the release to not lower Lake Eleanor storage below such value. C 2a.21 directs the storage goal for Lake Eleanor at the assumed fill date of the end of June.

5.3.9 CCSF Water Supply Parameters

The matrix describing the San Francisco water supply parameters (Figure 5.3-9) provides the model information to report the state of Test Case condition water supply action levels and the potential changes in the occurrence of action level due to alternative operations.

Entries at C 2a.30 represent the relationship between CCSF total system storage (at the end of June each year) and the advisement of water supply actions. Total system storage includes CCSF's local watershed reservoirs, its Hetch Hetchy Project reservoirs, and also the Don Pedro Water Bank Account Balance. Local watershed storage is provided from CCSF's system operation model (HHLSM) as pre-processed values for the simulation period. These values are combined with the Model's depiction of CCSF reservoir storage for the Tuolumne River system to depict total system storage. A water supply action level for each year of each study is determined by the matrix, relating total system storage thresholds to advised action levels. For instance, if total system storage at the end of June of a year is greater than 700,000 acre-feet and less than 1,100,000 acre-feet, an action level of 10 percent rationing is advised. The CCSF Test Case condition SJPL diversions include the effect of occasional water delivery shortages due to these water supply parameters.

Section 2 - CCSF Facilities

	Minimum releases below reservoir		(C 2.01)	(C 2.02)	15,000 6,500	4,400
	Schedule Index - Accum Inches or Storage		Below Dam Flow Requirement - CFS	Discretionary Sche		.,
	CY Month A (1) B (2)	C (3)	CY Month A (1) B (2) C (3)	CY Month	A (1) B (2)	C (3)
C 2.00)	1 8.80 6.10		1 50 40 35	1	0 0	0
	2 14.00 9.50		2 60 50 35	2	0 0	0
	3 18.60 14.20		3 60 50 35	3	0 0	0
	4 23.00 18.00		4 75 65 35 5 100 80 50	4	0 0	0
	5 26.60 19.50		5 100 80 50	5	0 0	0
	6 28.45 21.25		6 125 110 75	6	0 0	0
	7 575,000 390,000		7 125 110 75	7	0 0	0
	8 640,000 400,000		8 125 72.5 75	8	0 0	0
			9 90 65 62.5	9	0 0	0
			10 60 50 35	10	0 0	0
			11 60 50 35 12 50 40 35	11	0 0	0
			12 50 40 35	12	0 0	0
	Reservoir Management <u>Target Storage - Acre-feet</u> Soft Trat Hard Limit		lt release forecast parameters I watershed runoff used for all forecasts of inflow (perfect foresight)			
	Soft Trgt Hard Limit CY Month EOM EOM					
2.10)		Release o	of forecasted excess runoff	Max	kimum advised release for	r snowmelt
2.10)	CY Month EOM EOM	Release o (C 2.20)	of forecasted excess runoff 10 percent of Februay - June excess runoff during February	(C 2.25)	kimum advised release for 1,200 cfs - February	r snowmelt
2.10)	CY Month EOM EOM 1 320,000 360,360	(C 2.20)				r snowmelt
2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360	(C 2.20)	10 percent of Februay - June excess runoff during February	(C 2.25)	1,200 cfs - February	r snowmelt
2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23)	10 percent of Februay June excess runoff during February 10 percent of March - June excess runoff during March 10 percent of April - June excess runoff during April 10 percent of May - June excess runoff during June	(C 2.25) (C 2.26) (C 2.27) (C 2.28)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May	r snowmelt
2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23)	 percent of Februay - June excess runoff during February percent of March - June excess runoff during March percent of April - June excess runoff during April 	(C 2.25) (C 2.26) (C 2.27) (C 2.28)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April	r snowmelt
C 2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360 7 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23) (C 2.24)	 percent of Februay June excess runoff during February percent of March - June excess runoff during March percent of April - June excess runoff during April percent of May - June excess runoff during June percent of June excess runoff during June 	(C 2.25) (C 2.26) (C 2.27) (C 2.28) (C 2.29)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May 100,000 cfs - June	
C 2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360 7 360,360 360,360 8 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23) (C 2.24) <i>Minimun</i>	 10 percent of Februay June excess runoff during February 10 percent of March - June excess runoff during March 10 percent of April - June excess runoff during April 100 percent of May - June excess runoff during June 100 percent of June excess runoff during June 101 percent of June excess runoff during June 102 percent of June excess runoff during June 	(C 2.25) (C 2.26) (C 2.27) (C 2.28) (C 2.29)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May 100,000 cfs - June get storage for filling at er	
C 2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360 7 360,360 360,360 8 360,360 360,360 9 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23) (C 2.24) <i>Minimun</i>	 percent of Februay June excess runoff during February percent of March - June excess runoff during March percent of April - June excess runoff during April percent of May - June excess runoff during June percent of June excess runoff during June 	(C 2.25) (C 2.26) (C 2.27) (C 2.28) (C 2.29)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May 100,000 cfs - June	
(C 2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360 7 360,360 360,360 8 360,360 360,360 9 360,360 360,360 10 330,000 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23) (C 2.24) <i>Minimun</i>	 10 percent of Februay June excess runoff during February 10 percent of March - June excess runoff during March 10 percent of April - June excess runoff during April 100 percent of May - June excess runoff during June 100 percent of June excess runoff during June 101 percent of June excess runoff during June 102 percent of June excess runoff during June 	(C 2.25) (C 2.26) (C 2.27) (C 2.28) (C 2.29)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May 100,000 cfs - June get storage for filling at er	
(C 2.10)	CY Month EOM EOM 1 320,000 360,360 2 320,000 360,360 3 320,000 360,360 4 320,000 360,360 5 360,360 360,360 6 360,360 360,360 7 360,360 360,360 8 360,360 360,360 9 360,360 360,360	(C 2.20) (C 2.21) (C 2.22) (C 2.23) (C 2.24) <i>Minimun</i>	 10 percent of Februay June excess runoff during February 10 percent of March - June excess runoff during March 10 percent of April - June excess runoff during April 100 percent of May - June excess runoff during June 100 percent of June excess runoff during June 101 percent of June excess runoff during June 102 percent of June excess runoff during June 	(C 2.25) (C 2.26) (C 2.27) (C 2.28) (C 2.29)	1,200 cfs - February 1,150 cfs - March 1,200 cfs - April 100,000 cfs - May 100,000 cfs - June get storage for filling at er	

Figure 5.3-6. Hetch Hetchy Reservoir.

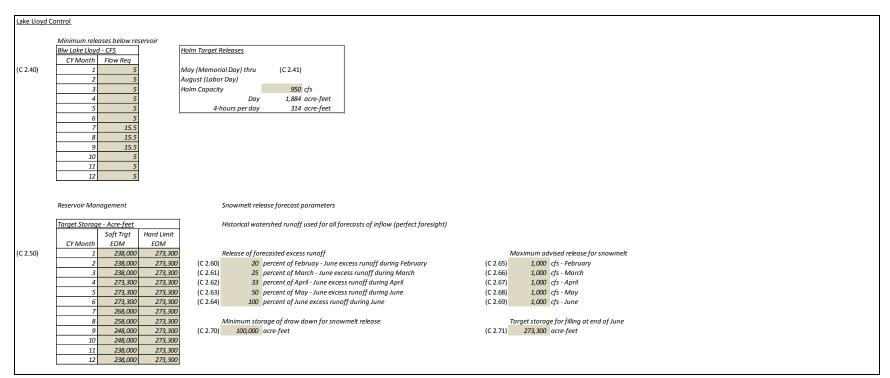


Figure 5.3-7. Lake Lloyd.

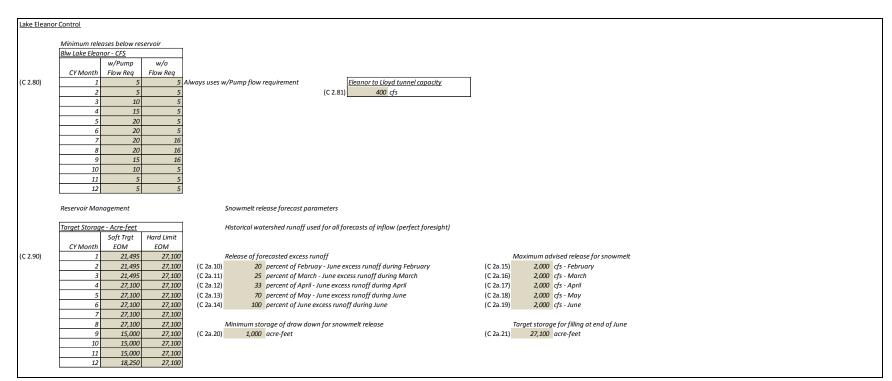


Figure 5.3-8. Lake Eleanor.

Figure 5.3-9. CCSF Water Supply Parameters.

5.3.10 Section 3: Don Pedro Reservoir and CCSF Elevation/Storage/Area and Evaporation Factors

The section (Figure 5.3-10) provides entry of the physical elevation/storage/area relationship for Don Pedro Reservoir and CCSF reservoirs. The values entered at C 3.00 for Hetch Hetchy Reservoir, Lake Lloyd, Lake Eleanor and Don Pedro Reservoir are currently being used by the Model. The Model employs a table lookup function to determine the area of a reservoir based on storage. The area is multiplied by a reservoir's evaporation factor for the estimation of reservoir evaporation. The monthly evaporation factor for CCSF reservoirs is entered at C 3.10 and Don Pedro Reservoir's evaporation factors are entered at C 3.20. These reservoir rating tables and evaporation factors are consistent with the daily accounting of Tuolumne River flows between the Districts and CCSF.

5.3.11 Section 4: Don Pedro Reservoir Flood Control Reservation and Discretionary Target

This section (Figure 5.3-11) provides for the entry of the preferred storage target for Don Pedro Reservoir. Values entered at C 4.00 and C 4.01 advises the management of reservoir storage throughout a year. A hard limit of 2,030,000 acre-feet directs the maximum allowed storage in Don Pedro Reservoir at the end of each month. Model logic will not allow exceedence of these values and will release addition water from the facility if needed to not exceed the values. The soft target ("Final Target Storage" at C 4.00), also representing a value at the end of each day, when exceeded advises the model to make additional releases in order to not exceed that reservoir storage. Model logic computes the storage exceedence, if any, every seventh day and advises a release in addition to minimum releases. The rate of this additional release is equal to the exceedence volume spread over ten days. For transitional months when the soft target value at the end of a month differs from a previous month, the transition in storage target is parsed equally within the days of the month.

The guidance provided by this parameter manages Don Pedro Reservoir storage throughout the year for both ACOE objectives during the season of rain flood reservation space and additional discretionary reservoir storage space or targets to manage reservoir storage from one year to another.

Section 3 - Don Pedro Reservoir and CCSF Reservoir Elevation/Storage/Area and Evaporation Factors

Ident Herby Here voirDon Perfore ever voirBetw rTStor AARefCStor ANNNN320.041012.0440.00.05.0400.50.00.	(C 3.00)														
3520.0 410 124.0 440.0 0.0 5.0 465.0 0.0		,			, ,										
										Elev - FT		Area- Ac			
3520.2 468 131.8 4440.2 2.0 5.1 4665.2 0.0 5.0 0 0 0 1 1 Feb 2 = -0.0336 3520.4 3520.4 352.4 4400.5 4.0 5.2 4605.4 1.0 1.0 1.0 1.1 1 Feb 2 = -0.0336 3520.4 555 143.5 440.0 5.0 5.3 4605.5 1.0 1.2.6 3 2 Apr 4 = 0 3520.6 553 143.4 440.0 5.0 5.3 4605.7 2.0 1.7.6 8 3 Jun 6 = 0.006722 3520.6 641 152.2 440.0 8.0 4605.7 2.0 2.2.7 17.6 Aug 8 = 0.006722 3520.1 699 163.0 4441.0 8.0 5.5 4605.7 400.7 2.0 2.7 7.7 42.7 7.0 0.00723 3521.2 775 170.8 4441.3 1.0 5.7 4605.7 400.7 3.0 3.0 <td></td> <td></td> <td></td> <td>4440.0</td> <td></td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>CCSF</td> <td>Reservoirs</td> <td></td>				4440.0		5.0					0	0	CCSF	Reservoirs	
3520.3 4497 135.7 4440.3 2.0 5.2 4605.3 1.0 7.6 1 1 1 Mar 3 0 3520.4 555 435.4 4440.5 3.0 5.2 4605.5 10 12.6 3 2 Apr 4 0 3520.5 555 435.4 4440.6 5.0 5.3 4605.7 2.0 15.1 5 3 May 5 0.000272 3520.7 667.1 159.1 4440.8 6.0 5.4 4605.8 2.0 2.0 2.2 1.1 1.6 Aug 8 0.000722 3521.0 670 159.1 4440.9 7.0 5.5 4605.8 406.1 3.0 2.7 42 7 Aug 8 0.000722 3521.1 775 170.8 4441.1 8.0 5.6 4605.4 3.0 3.2 757 8 Dec 1.2 0 0.00323 3521.2 7757 170.8 4441.4 1.10 5.7 4605.4 3.0 3.2	3520.	1 439	127.9	4440.1	1.0	5.1	4605.1	0.0	2.5		0	0			
3520.4 526 139.6 440.4 3.0 5.2 460.5 1.0 10.1 1 <t< td=""><td>3520.</td><td>2 468</td><td>131.8</td><td>4440.2</td><td>2.0</td><td>5.1</td><td>4605.2</td><td>0.0</td><td>5.0</td><td></td><td>0</td><td>0</td><td>Jan</td><td>1 =</td><td></td></t<>	3520.	2 468	131.8	4440.2	2.0	5.1	4605.2	0.0	5.0		0	0	Jan	1 =	
35205 555 143.5 4440.5 5.0 5.0 1.0 12.6 3 2 Apr 4 = 0 3520.6 588 147.4 4440.6 5.0 5.3 4605.5 2.0 15.1 5 3 May 5 = 0.003253 3520.7 612 15.1 440.8 6.0 5.4 4605.8 2.0 2.0 12 4 Juin 6 = 0.009758 3520.7 159.1 4440.9 7.0 5.5 4605.1 2.0 2.2,2 17.7 6 Sep 9 = 0.009758 3521.1 728 4441.1 8.0 5.6 4605.1 3.0 32.7 42 7 Oct 10 = 0.009253 3521.2 787 47.4 441.1 10.0 5.7 4606.3 3.0 32.7 57 8 Dec 12 = 0 3521.4 815 744.4 11.0 5.8 4605.5 4.0 4.78 8 Yaporation Factors C53.00 3521.6 872 184	3520.	3 497	135.7	4440.3	2.0	5.2	4605.3	1.0	7.6		1	1	Feb	2 =	-0.0036
5206 583 1474 44406 5.0 5.3 4605.7 2.0 15.1 5 3 Jun 6 = 0.006722 320.0 641 15.2 440.4 5.0 5.4 4605.7 2.0 2.0 2.7 1/1 6 Aug 8 = 0.006722 320.1 670 15.1 440.4 8.0 5.5 4605.9 2.0 2.27 30.0 35 7 Sep 9 = 0.006722 321.1 786 1441.1 8.0 5.6 4606.1 3.0 3.7 5.7 8 Nov 11 = 0 321.1 786 147.7 4441.3 1.0 5.7 4606.4 3.0 32.7 57 8 Dec 12 = 0 321.1 786 144.1 1.10 5.7 4606.4 3.0 35.3 65 8 Dec 12 = 0 2.12 0 3.12 5.3 4607.5 4.0 4.28 91 9 1.01 1.0 5.7 4.00.7 5.0 5.4<	3520.4	4 526	139.6	4440.4	3.0	5.2	4605.4	1.0	10.1		1	1	Mar	3 =	0
3520.7 612 151.3 4440.7 5.0 5.4 4605.7 2.0 17.6 8 3 Jun 6 = 0.006722 3520.9 661 155.2 4440.9 8.0 5.5 4605.9 2.0 2.27 17 6 Aug 8 = 0.006722 3521.9 669 163.0 4441.0 8.0 5.5 4606.1 3.0 2.7 42 7 Oct 10 = 0.006722 3521.1 7.78 166.9 4441.1 8.0 5.6 4606.2 3.0 3.02 - 8 Nov 1 = 0 3521.2 7.77 166.9 4441.4 10.0 5.7 4606.3 3.0 3.27 57 8 Dec 12 = 0 3521.6 843 182.5 4441.6 10.0 5.8 4606.5 4.0 47.8 82 9 Don Pedro Reservoir (C 3.20) 3521.6 872 186.4 444.4 12.0 5.8 4606.5 4.0 4.30 82 9 Don Pedro Reservo	3520.	5 555	143.5	4440.5	4.0	5.3	4605.5	1.0	12.6		3	2	Apr	4 =	0
3520.8 641 155.2 4440.8 6.0 5.4 4605.8 2.0 20.2 12 44 4.ug 8 = 0.009758 3520.9 670 159.1 4440.9 7.0 5.5 4605.0 2.0 22.7 17 6 Aug 8 = 0.009758 3521.1 780 174 441.1 8.0 5.6 4606.1 3.0 27.7 42 7 Oct 10 = 0.003253 3521.2 775 170.8 4441.2 9.0 5.6 4606.1 3.0 32.7 5.7 80 Nov 11 = 0 3521.4 815 178.6 4441.4 11.0 5.7 4606.4 3.0 35.3 65 8 3521.5 843 182.5 4864.4441.6 12.0 5.8 4606.7 4.0 32.8 91 9 9.0 9.0 9.0 13.0 5.2 4606.7 4.0 42.8 91 9 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 <t< td=""><td>3520.</td><td>5 583</td><td>147.4</td><td>4440.6</td><td>5.0</td><td>5.3</td><td>4605.6</td><td>2.0</td><td>15.1</td><td></td><td>5</td><td>3</td><td>May</td><td></td><td>0.003253</td></t<>	3520.	5 583	147.4	4440.6	5.0	5.3	4605.6	2.0	15.1		5	3	May		0.003253
3520.9670159.14440.97.05.54605.92.02.2.7176Aug8 =0.009783521.16694441.08.05.54606.13.027.7427Oct10 =0.02533521.275717.84441.29.05.64606.23.03.02.757427Oct10 =0.02533521.378617.7441.310.05.74606.33.032.7578Dec12 =03521.481517.64441.411.05.74606.54.03.035.3658Nov11 =0.02533521.6872186.44441.612.05.84606.54.040.3829Don Pedro Reservoir(C3.20)3521.7901190.34441.713.05.94606.74.04.3919Jan1 =-0.002653521.9930194.24441.814.06.04605.95.047.911010Feb<	3520.	7 612	151.3	4440.7	5.0	5.4	4605.7	2.0	17.6		8	3	Jun	6 =	0.006722
3521.0 6699 163.0 4441.0 8.0 5.5 4606.0 2.0 25.2 300.0 35 7 Sep 9 = 0.006722 3521.1 728 166.9 4441.1 8.0 5.6 4606.1 3.0 22.7 70 ct 10 = 0.00323 3521.2 757 170.8 4441.2 9.0 5.6 4606.3 3.0 32.7 57 8 Dec 12 = 0 3521.4 815 178.6 4441.4 11.0 5.7 4606.5 4.0 37.8 - 65 8 3521.5 543.3 182.5 4441.5 11.0 5.9 4606.7 4.0 4.2 91 9 - Evaporation Factors - 75/Ac/Day 3521.5 930 194.2 4441.8 14.0 5.9 4606.7 5.0 4.0 4.2 91 9 - - - - - - - 0.000768 3521.9 959 198.1 4441.9 14.0 6.0 4607.5 5.0				4440.8	6.0	5.4	4605.8	2.0	20.2		12	4	Jul		0.009758
3521.1 778 166.9 4441.1 8.0 5.6 4606.1 3.0 27.7 42 7 Oct 10 = 0.03253 3521.2 777 170.8 4441.2 9.0 5.6 4606.2 3.0 30.2 50 8 Nov 11 = 0 3521.4 815 178.6 4441.4 11.0 5.7 4606.4 3.0 35.3 65 8 3521.5 843 182.5 4441.5 11.0 5.8 4606.5 4.0 37.8 74 8 Sec. 12 = 0.0 C5/Ac/Day 3521.5 843 182.5 4441.7 13.0 5.9 4606.7 4.0 42.8 91<9	3520.	9 670	159.1	4440.9	7.0	5.5	4605.9	2.0	22.7		17	6	Aug		0.009758
3521.2 757 170.8 4441.2 9.0 5.6 4606.2 3.0 30.2 50 8 Nov 11 = 0 3521.3 786 174.7 4441.3 10.0 5.7 4606.3 3.0 32.7 557 8 Dec 12 = 0 3521.5 843 182.5 4441.5 11.0 5.8 4606.5 4.0 37.8 74 8 Evaporation Fattors Don Pedro Reservoir (C 3.20) 3521.5 843 182.5 4441.8 14.0 5.9 4606.6 4.0 40.3 82 9 Don Pedro Reservoir (C 3.20) 3521.5 930 194.2 4441.8 14.0 5.9 4606.7 4.0 42.8 91 9 1an 1 = -0.00026 3521.5 959 198.1 4441.9 14.0 6.0 4607.0 5.0 5.4 100 10 Mar 3 = 0.00135 3522.1 1075 213.7 4442.2 17.0 6.0 60.0 57.9 130 10 <	3521.	0 699		4441.0	8.0	5.5	4606.0	2.0		300.0	35	7	Sep		
3521.3 786 174.7 4441.3 10.0 5.7 4606.3 3.0 32.7 5.7 8 Dec 12 = 0 3521.4 843 128.5 4441.4 11.0 5.7 4606.4 3.0 35.3 65 8 3521.5 843 128.5 4441.6 12.0 5.8 4606.5 4.0 40.3 74 8 Pon Pedro Resvoir (C 3.20) 3521.6 872 186.4 4441.6 12.0 5.8 4606.7 4.0 42.8 91 91 91 93 139.1 1 = -0.00026 3521.7 901 190.3 444.1 14.0 5.9 4606.7 5.0 47.9 100 91 Fen 2 = -0.00026 3521.7 995 988.1 4441.9 14.0 6.0 4607.1 5.0 52.9 130 120 100 Mar 3 = 0.00135 3522.1 1017 20.8 4442.3 17.0 6.1 4607.2 5.0 57.9 140 10 Mar<	3521.	1 728	166.9	4441.1	8.0	5.6	4606.1	3.0	27.7		42	7	Oct	10 =	0.003253
3521.4 815 178.6 4441.4 11.0 5.7 4606.4 3.0 35.3 65 8 3521.5 843 182.5 4441.5 11.0 5.8 4606.5 4.0 37.8 74 8				4441.2	9.0	5.6		3.0				8	Nov		0
3521.5 843 182.5 4441.5 11.0 5.8 4606.5 4.0 37.8 82 9 Don Pedro Reservoir (C 3.20) 3521.7 901 1903 4441.7 13.0 5.9 4606.7 4.0 42.8 91 9	3521.	3 786	174.7	4441.3	10.0	5.7	4606.3	3.0	32.7			8	Dec	12 =	0
3521.6872186.44441.612.05.84606.64.040.3829Don Pedro Reservor(C 3.20)3521.790119034441.713.05.94606.74.042.8919193521.8930194.24441.814.05.94606.74.042.8919Jan1 =-0.000283521.9959198.1444.914.06.04606.95.047.91009Feb2 =-0.000263522.11007205.94442.116.06.14607.15.052.4310.012010Mar3 =0.0011353522.11017205.94442.217.06.14607.25.055.414010May5 =0.0079683522.31046209.84442.317.06.24607.46.060.416111Jun6 =0.019473522.4110421.64442.418.06.24607.46.060.416111Jul7 =0.038763522.51133221.54442.620.06.34607.77.068.017211Aug8 =0.010723522.41140225.4444.620.06.56.06.5.518311Ct10 =0.003953522.51133221.5444.221.06.44607.77.06.06.1 </td <td>3521.4</td> <td>4 815</td> <td>178.6</td> <td>4441.4</td> <td>11.0</td> <td>5.7</td> <td>4606.4</td> <td>3.0</td> <td>35.3</td> <td></td> <td>65</td> <td>8</td> <td></td> <td></td> <td></td>	3521.4	4 815	178.6	4441.4	11.0	5.7	4606.4	3.0	35.3		65	8			
3521.790119.34441.713.05.94606.74.042.891919 (T_{1}) $(T_{$	3521.	5 843	182.5	4441.5	11.0	5.8	4606.5	4.0	37.8		74	8	Evap	oration Factors	
3521.8 930 194.2 4441.8 14.0 5.9 4606.8 4.0 45.3 100 9 Jan 1 = -0.0088 3521.9 959 198.1 4441.9 14.0 6.0 4606.9 5.0 47.9 110 10 Feb 2 = -0.0026 3522.0 988 202.0 4442.0 15.0 6.0 4607.1 5.0 52.9 130 120 10 Mar 3 = 0.00135 3522.1 1017 205.9 4442.1 16.0 6.1 4607.1 5.0 52.9 130 10 Apr 4 = 0.00381 3522.3 1075 213.7 4442.3 17.0 6.2 4607.4 6.0 60.0 161 1 Jul 7 = 0.013976 3522.4 1104 217.6 4442.5 19.0 6.3 4607.5 6.0 63.0 172 11 Jul 7 = 0.013976 3522.5 1133 221.5 4442.6 20.0 6.3 4607.5 6.0 65.0 17	3521.	5 872	186.4	4441.6	12.0	5.8	4606.6	4.0	40.3		82	9	Don	Pedro Reservoir	(C 3.20)
3521.9 959 198.1 4441.9 14.0 6.0 4606.9 5.0 47.9 110 10 Feb 2 = -0.0026 3522.0 988 202.0 4442.0 15.0 6.0 4607.0 5.0 52.9 120 10 Mar 3 = 0.00135 3522.1 1017 205.9 4442.1 16.0 6.1 4607.1 5.0 52.9 130 10 Apr 4 = 0.00381 352.2 1046 209.8 4442.2 17.0 6.1 4607.2 5.0 55.4 140 10 May 5 = 0.007968 352.2 1014 217.6 4442.3 17.0 6.2 4607.3 6.0 63.0 172 11 Jul 7 = 0.013976 352.2.5 1133 221.5 4442.5 19.0 6.3 4607.5 6.0 63.0 172 11 Aug 8 = 0.01470 352.6 1161 22.4 4442.6 20.0 6.4 607.7 7.0 68.0 194 11<	3521.	7 901	190.3	4441.7	13.0	5.9	4606.7	4.0	42.8		91	9			CFS/Ac/Day
3522.0 988 202.0 4442.0 15.0 6.0 4607.0 5.0 52.4 310.0 120 10 Apr 4 = 0.00135 3522.1 1017 205.9 4442.1 16.0 6.1 4607.1 5.0 52.9 130 10 Apr 4 = 0.00135 3522.2 1046 209.8 4442.2 17.0 6.1 4607.2 5.0 55.4 140 10 May 5 = 0.007968 3522.4 1047 213.7 4442.3 17.0 6.2 4607.3 6.0 57.9 150 11 Jun 6 = 0.01947 3522.5 1133 221.5 4442.5 19.0 6.3 4607.5 6.0 63.0 152 143 11 Jul 7 = 0.013976 3522.5 1133 221.5 4442.5 19.0 6.3 4607.7 7.0 68.0 172 11 Aug 8 = 0.014109 352.7 1190 223.3 4442.8 21.0 6.4 4607.7 7.0 <	3521.	930	194.2	4441.8	14.0	5.9	4606.8	4.0	45.3		100	9	Jan	1 =	-0.00088
3522.1 1017 205.9 4442.1 16.0 6.1 4607.1 5.0 52.9 130 10 Apr 4 = 0.003081 3522.2 1046 209.8 4442.2 17.0 6.1 4607.2 5.0 55.4 140 10 May 5 = 0.007968 3522.3 1075 213.7 4442.3 17.0 6.2 4607.3 6.0 57.9 150 11 Jun 6 = 0.01947 3522.4 1104 217.6 4442.5 19.0 6.3 4607.5 6.0 6.0 6.0 161 11 Jul 7 = 0.013976 3522.6 1161 22.5.4 4442.6 20.0 6.3 4607.7 7.0 6.0 6.0 172 11 Aug 8 = 0.01409 3522.6 1161 22.5.4 4442.6 20.0 6.4 4607.7 7.0 6.8.0 194 11 Oct 10 = 0.006395 3522.7 1190 22.3 4442.9 22.0 6.6 4607.9 7.0	3521.	9 959	198.1	4441.9	14.0	6.0	4606.9	5.0	47.9		110	10	Feb	2 =	-0.00026
3522.2 1046 209.8 4442.2 17.0 6.1 4607.2 5.0 55.4 140 10 May 5 = 0.007968 3522.3 1075 213.7 4442.3 17.0 6.2 4607.3 6.0 57.9 150 11 Jun 6 = 0.010947 3522.4 1104 217.6 4442.4 18.0 6.2 4607.4 6.0 60.4 161 11 Jul 7 = 0.013976 3522.5 1133 221.5 4442.6 20.0 6.3 4607.5 6.0 65.5 183 11 Aug 8 = 0.014109 3522.6 1161 225.4 4442.6 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.7 1190 223.2 4442.8 21.0 6.4 4607.8 7.0 7.0 206 12 Nov 11 = 0.001781 3523.0 1277 241.0 4443.0 23.0 6.5 4607.9 7.0 7.0 218	3522.	988	202.0	4442.0	15.0	6.0	4607.0	5.0	50.4	310.0	120	10	Mar	3 =	0.001135
3522.3 1075 213.7 4442.3 17.0 6.2 4607.3 6.0 57.9 150 11 Jun 6 = 0.010947 3522.4 1104 217.6 4442.4 18.0 6.2 4607.4 6.0 60.4 161 11 Jul 7 = 0.013976 3522.5 1133 221.5 4442.6 19.0 6.3 4607.5 6.0 63.0 172 11 Aug 8 = 0.01409 3522.6 1161 225.4 4442.6 20.0 6.3 4607.7 7.0 68.0 172 11 Aug 8 = 0.01072 3522.7 1190 229.3 4442.7 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 73.0 218 12 Dec 12 = -0.0013 3523.0 1277 241.0 4443.0 23.0 6.5 4608.1 8.0 78.1 218	3522.	1 1017	205.9	4442.1	16.0	6.1	4607.1	5.0	52.9		130	10	Apr	4 =	0.003081
3522.4 1104 217.6 4442.4 18.0 6.2 4607.4 6.0 60.4 11 11 11 Aug 8 = 0.013976 3522.5 1133 221.5 4442.5 19.0 6.3 4607.5 6.0 63.0 172 11 Aug 8 = 0.014109 3522.6 1161 225.4 4442.6 20.0 6.3 4607.7 6.0 65.5 183 11 Sep 9 = 0.01072 3522.7 1190 229.3 4442.7 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 7.0 8.0 218 12 Dcc 12 = -0.00138 3523.0 1277 241.0 4443.0 23.0 6.6 4608.1 8.0 78.1 242 13 235 138 244.9 4443.2 24.0 6.6 4608.2 8.0 8.0 255 13 255 13 <td>3522.</td> <td>2 1046</td> <td>209.8</td> <td>4442.2</td> <td>17.0</td> <td>6.1</td> <td>4607.2</td> <td>5.0</td> <td>55.4</td> <td></td> <td>140</td> <td>10</td> <td>May</td> <td>5 =</td> <td>0.007968</td>	3522.	2 1046	209.8	4442.2	17.0	6.1	4607.2	5.0	55.4		140	10	May	5 =	0.007968
3522.5 1133 221.5 4442.5 19.0 6.3 4607.5 6.0 63.0 172 11 Aug 8 = 0.014109 3522.6 1161 225.4 4442.6 20.0 6.3 4607.5 6.0 65.5 183 11 Sep 9 = 0.01072 3522.7 1190 229.3 4442.7 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 7.0 206 12 Nov 11 = 0.001781 3522.9 1248 237.1 4442.9 22.0 6.5 4607.9 7.0 7.0 206 12 Nov 11 = 0.001781 3523.0 1277 241.0 4443.0 23.0 6.6 4608.1 8.0 78.1 242 13 242.13 352.3 1336 248.8 4443.2 24.0 6.6 4608.2 8.0 88.1 268 10 4668 467.5	3522.	3 1075	213.7	4442.3	17.0	6.2	4607.3	6.0	57.9		150	11	Jun	6 =	0.010947
3522.6 1161 225.4 4442.6 20.0 6.3 4607.6 6.0 65.5 183 11 Sec 9 = 0.01072 3522.7 1190 229.3 4442.7 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 7.0 206 12 Nov 11 = 0.001781 3522.9 1248 237.1 4442.9 22.0 6.5 4607.9 7.0 7.0 206 12 Nov 11 = 0.001781 3523.0 1277 241.0 4443.0 23.0 6.6 4608.1 8.0 78.1 242 13 3523.1 1306 244.9 4443.1 23.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 252.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 243 14 3523.4 1393 2	3522.4	4 1104	217.6	4442.4	18.0	6.2	4607.4	6.0	60.4		161	11	Jul	7 =	0.013976
3522.7 1190 229.3 4442.7 20.0 6.4 4607.7 7.0 68.0 194 11 Oct 10 = 0.006395 3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 70.5 206 12 Nov 11 = 0.001781 352.9 1248 237.1 4442.9 22.0 6.5 4607.9 7.0 73.0 218 128 12 Dec 12 = -0.0013 352.3 1277 241.0 4443.0 23.0 6.6 4608.1 8.0 78.1 242 13 3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 25.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 243 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15 14 15 14 15 14 14 <td< td=""><td>3522.</td><td>5 1133</td><td>221.5</td><td>4442.5</td><td>19.0</td><td>6.3</td><td>4607.5</td><td>6.0</td><td>63.0</td><td></td><td>172</td><td>11</td><td>Aug</td><td>8 =</td><td>0.014109</td></td<>	3522.	5 1133	221.5	4442.5	19.0	6.3	4607.5	6.0	63.0		172	11	Aug	8 =	0.014109
3522.8 1219 233.2 4442.8 21.0 6.4 4607.8 7.0 70.5 206 12 Nov 11 = 0.001781 3522.9 1248 237.1 4442.9 22.0 6.5 4607.9 7.0 73.0 218 12 Dec 12 = -0.00013 3523.0 1277 241.0 4443.0 23.0 6.5 4608.0 7.0 75.6 320.0 229 12 -0.00013 3523.1 1306 244.9 4443.1 23.0 6.6 4608.1 8.0 78.1 242 13 3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 25.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15 14 14 14 14 14 14 14 14 14 14 <t< td=""><td>3522.</td><td>5 1161</td><td>225.4</td><td>4442.6</td><td>20.0</td><td>6.3</td><td>4607.6</td><td>6.0</td><td>65.5</td><td></td><td>183</td><td>11</td><td>Sep</td><td>9 =</td><td>0.01072</td></t<>	3522.	5 1161	225.4	4442.6	20.0	6.3	4607.6	6.0	65.5		183	11	Sep	9 =	0.01072
3522.9 1248 237.1 4442.9 22.0 6.5 4607.9 7.0 73.0 218 12 Dec 12 = 0.00013 3523.0 1277 241.0 4443.0 23.0 6.5 4608.0 7.0 75.6 320.0 229 12 3523.1 1306 244.9 4443.1 23.0 6.6 4608.1 8.0 78.1 242 13 3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 25.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3522.	7 1190	229.3	4442.7	20.0	6.4	4607.7	7.0	68.0		194	11	Oct	10 =	0.006395
3523.0 1277 241.0 4443.0 23.0 6.5 4608.0 7.0 75.6 320.0 229 12 3523.1 1306 244.9 4443.1 23.0 6.6 4608.1 8.0 78.1 242 13 3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 25.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3522.	3 1219	233.2	4442.8	21.0	6.4	4607.8	7.0	70.5		206	12	Nov	11 =	0.001781
3523.1 1306 244.9 4443.1 23.0 6.6 4608.1 8.0 78.1 242 13 3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 252.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3522.	9 1248	237.1	4442.9	22.0	6.5	4607.9	7.0	73.0		218	12	Dec	12 =	-0.00013
3523.2 1335 248.8 4443.2 24.0 6.6 4608.2 8.0 80.6 255 13 3523.3 1364 25.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 25.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3523.	1277	241.0	4443.0	23.0	6.5	4608.0	7.0	75.6	320.0	229	12			
3523.3 1364 252.7 4443.3 25.0 6.7 4608.3 8.0 83.1 268 14 3523.4 1393 256.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3523.	1 1306	244.9	4443.1	23.0	6.6	4608.1	8.0	78.1		242	13			
3523.4 1393 256.6 4443.4 26.0 6.7 4608.4 8.0 85.6 283 15	3523.	2 1335	248.8	4443.2	24.0	6.6	4608.2	8.0	80.6		255	13			
	3523.	3 1364	252.7	4443.3	25.0	6.7	4608.3	8.0	83.1		268	14			
3523.5 1422 260.5 4443.5 26.0 6.8 4608.5 9.0 88.2 297 15 ♥	3523.4	4 1393	256.6	4443.4	26.0	6.7	4608.4	8.0	85.6		283	15			
	3523.	5 1422	260.5	4443.5	26.0	6.8	4608.5	9.0	88.2		297	15	*		

Figure 5.3-10. Don Pedro Reservoir and CCSF Reservoir Characteristics.

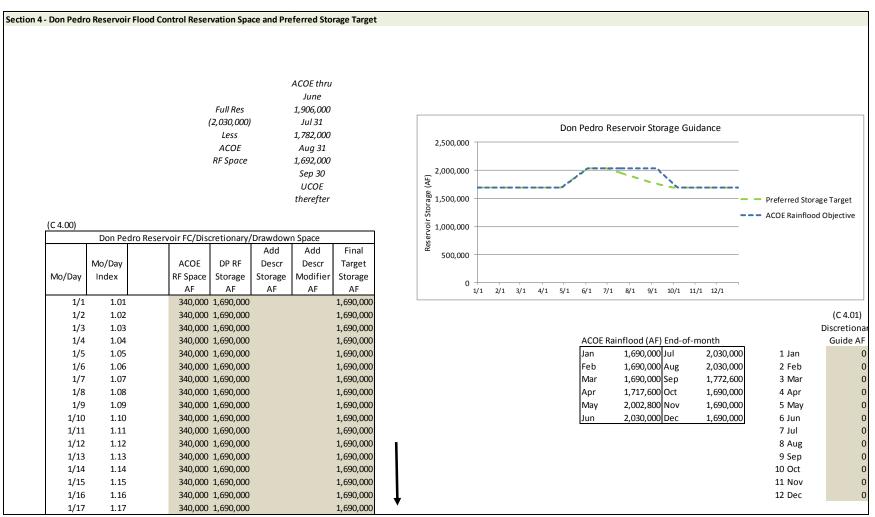


Figure 5.3-11. Don Pedro Reservoir Flood Control and Discretionary Target.

5.4 Output Worksheet

This worksheet (Output) provides an interface between Model computations and summary and analysis tools. It also provides a formatted set of information usable for exchange into an HEC-DSS database file, such as used to provide information to the temperature models used for this FERC investigation. Information concerning HEC-DSS can be found on the HEC web site at: http://www.hec.usace.army.mil/software/hec-dss/hecdss-dss.html

The structure and contents of worksheet Output accommodates the use of the HEC-DSS Excel Data Exchange Add-in which is an application for retrieving and storing interval time series data, in this circumstance the daily results of the Model.

Results provided in worksheet Output are directly linked to the computational and input worksheets of the Model. For instance, the daily inflow to Don Pedro Reservoir listed in worksheet Output is the value provided to worksheet DonPedro for its computations, which is dependent upon several other computation worksheets. As such, any change to model assumptions or data which causes a recalculation by the model will automatically update the values in worksheet Output. To preserve or store the results of a particular model study a copy of the worksheet should be created with a unique tab name and its contents converted to values. The HEC-DSS Add-in could also be used to create a unique database file for later use. Alternatively, but storage consuming, the entire Model could be saved as a unique study. However, this approach is not recommended as the worksheet Output will continue to be dynamically linked to the model's computational worksheets and any subsequent change to model assumptions will overwrite the results previously provided in the worksheet. More than 110 parameters are reported in the worksheet, representing salient information concerning the simulated operations and hydrology of the Tuolumne River and the Districts' and CCSF's facilities. Shown in Figure 5.4-1 is a snapshot of the content and format of the worksheet. Table 5.4-1 provides a listing of the parameters including their HEC-DSS name parts.

	А	В	С	D	E	F	G	Н		J	К	L	М	N
1	1	TUOLUMNE												
2	2	TUOLUMNE	TUOLUMNE	TUOLUMNE	TUOLUMNE	TUOLUMNE	DONPEDRO							
		FLOW-		FLOW-	FLOW-	FLOW-	FLOW-	FLOW-	FLOW-					
		LAGRANGE	FLOW-	LLOYDUNI	ELEANORU	UNREGUNI	TOTINFLO	SUP1INFLO	SUP2INFLO	FLOW-	FLOW-	FLOW-		
3	3	UNIMP	HHUNIMP	MP	NIMP	MP	W	WLL	WHH	INFLOWHH	INFLOWLL	INFLOWEL	STORAGE	EVAP
4	4	2	3	4	5	6	7	8	9	10	11	12	13	14
5	5	1DAY												
6	6	Test_Base												
7	7	1-Oct-70												
8	8	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
9	9	30-Sep-09												
10	10	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
11	11	CFS	CFS	CFS	CFS	CFS	CFS	AF	AF	CFS	CFS	CFS	AF	AF
12		PER_AVER												
13	10/1/1970	159	79	56	25	-1	322	0	0	90	223	10	1,666,767	143
14	10/2/1970		-82		2	130	453	0	0	90		10	1,664,567	141
15	10/3/1970	265	25	15	7		541	0	0	90			1,662,719	
16	10/4/1970				-179	302	625	0	0	90		10	1,659,892	141
17	10/5/1970			322	144		75	0		90			1,656,745	
18	10/6/1970			-48	-21		475	0	0	90			1,654,119	
19	10/7/1970	150		-51	-23		526	0		90		10	1,652,009	
20	10/8/1970		-29	54	24		209	0	-	90	-	10	1,650,525	
21	10/9/1970		-28		-		264	0	-	90	-	10	1,648,926	
22	10/10/1970		30		-11		210	0	-	90		10		
23	10/11/1970	293	176	-275	-123	515	620	0	0	90	5	10	1,645,737	140

Figure 5.4-1. Sample Parameters Listed in Output Worksheet.

Column	Col No.			Units	Parameters Listed in Output worksneet.
B		DSS - Part B TUOLUMNERIVER	DSS - Part C FLOW-LAGRANGEUNIMP	CFS	Description Unimpaired flow of Tuolumne River as computed at "La Grange"
C				CFS	· · · · ·
D		TUOLUMNERIVER	FLOW-HHUNIMP	CFS	Unimpaired flow at Hetch Hetchy Reservoir (inflow)
		TUOLUMNERIVER	FLOW-LLOYDUNIMP		Unimpaired flow at Lake Lloyd (inflow)
E		TUOLUMNERIVER	FLOW-ELEANORUNIMP	CFS	Unimpaired flow at Lake Eleanor (inflow)
F		TUOLUMNERIVER	FLOW-UNREGUNIMP	CFS	Unregulated inflow into Don Pedro Reservoir
G		DONPEDRO	FLOW-TOTINFLOW	CFS	Total inflow into Don Pedro Reservoir
Н		DONPEDRO	FLOW-SUP1INFLOWLL	AF	Supplemental release from Lake Lloyd
1		DONPEDRO	FLOW-SUP2INFLOWHH	AF	Supplemental release from Hetch Hetchy Reservoir
J	10	DONPEDRO	FLOW-INFLOWHH	CFS	Total inflow into Don Pedro Reservoir from Hetch Hetchy Reservoir
К	11	DONPEDRO	FLOW-INFLOWLL	CFS	Total inflow into Don Pedro Reservoir from Lake Lloyd
L	12	DONPEDRO	FLOW-INFLOWEL	CFS	Total inflow into Don Pedro Reservoir from Lake Eleanor
М	13	DONPEDRO	STORAGE	AF	Don Pedro Reservoir storage
N	14	DONPEDRO	EVAP	AF	Don Pedro Reservoir evaporation
0	15	DONPEDRO	STORAGE-RFTRG	AF	Don Pedro Reservoir storage target assuming USCOE rainflood reservation space
Р	16	DONPEDRO	STORAGE-SOFTTRG	AF	Don Pedro Reservoir storage target assuming USCOE rainflood reservation space and other guidance
Q	17	DONPEDRO	RELEASE-7DAYENCRADVISE	CFS	Don Pedro Reservoir advised release for target storage enchroachment
R		DONPEDRO	RELEASE-SNOWADVISE	CFS	Don Pedro Reservoir advised release for spring-time snowmelt release
S		DONPEDRO	RELEASE-TOTAL	CFS	Don Pedro Reservoir total release
T		DONPEDRO	POWR-MW	MW	Don Pedro Powerplant Capability
U.		DONPEDRO	POWR-EFF		Don Pedro Powerplant efficiency
v		DONPEDRO	POWR-MWh	MWh	Don Pedro Powerplant energy production
Ŵ		DONPEDRO	RELEASE-PH	AF	Don Pedro Powerplant release
X		DONPEDRO	RELEASE-BYPASS	AF	Don Pedro Powerplant levelase
Ŷ		DONPEDRO	FLOW-TOTCANALS	AF	Don Pedro Reservoir release for combined MID/TID canals
Z				CFS	
		LAGRANGE	RELEASE-MINQ		Minimum Tuolumne River release requirement (at La Grange)
AA		LAGRANGE	RELEASE-TOTAL	CFS	Total Tuolumne River Release below La Grange Dam
AB		LAGRANGE	RELEASE-MCANAL	CFS	Diversion to Modesto Canal
AC		LAGRANGE	RELEASE-TCANAL	CFS	Diversion to Turlock Canal
AD		LAGRANGE	FULLCANALREQ	AF	Full canal demand of combined MID/TID canals
AE		RIVER	FLOW-LTRACC1	CFS	Lower Tuolumne River accretion 1 (placeholder)
AF		RIVER	FLOW-LTRACC2	CFS	Lower Tuolumne River accretion 2 (placeholder)
AG		RIVER	FLOW-LTRACC3	CFS	Lower Tuolumne River accretion 3 (placeholder)
AH	34	RIVER	FLOW-LTRACC4	CFS	Lower Tuolumne River accretion 4 (currently contains synthetic record of accretion blw La Grange)
AI	35	RIVER	FLOW-DRYCK	CFS	Tuolumne River inflow from Dry Creek
AJ	36	RIVER	FLOW-LTRACC5	CFS	Lower Tuolumne River accretion 5 (placeholder)
AK	37	RIVER	FLOW-TR1	CFS	Lower Tuolume River flow at end of accretion reach 1 (placeholder)
AL	38	RIVER	FLOW-TR2	CFS	Lower Tuolume River flow at end of accretion reach 2 (placeholder)
AM		RIVER	FLOW-TR3	CFS	Lower Tuolume River flow at end of accretion reach 3 (placeholder)
AN		RIVER	FLOW-TR4	CFS	Lower Tuolume River flow at end of accretion reach 4 (placeholder)
AO		RIVER	FLOW-MODMAX	CFS	Target flow for Tuolumne River below Modesto
AP		RIVER	FLOW-MODMAXLG	CFS	Maximum target release from La Grange to not exceed target flow below Modesto
AQ		RIVER	FLOW-MODESTO	CFS	Flow of Tuolumne River below Modesto
AR		RIVER	FLOW-TR5	CFS	Lower Tuolume River flow at end of accretion reach 5 (placeholder)
AS		MIDCANAL	MIDAGPDAW	AF	Projected demand for applied water in MID
AS		MIDCANAL	MIDAGPDAW	AF	Projected demand for municipal and industrial uses from MID
AU		MIDCANAL	MIDFACT	PERCENT	Adjustment factor between MID PDAW and canal turnouts
AU		MIDCANAL	MIDFACT	AF	Nominal private groundwater pumping in MID
				AF	
AW		MIDCANAL	MIDOPSPLS		MID Canal operation spills
AX		MIDCANAL	MIDLOSS	AF	MID Canal losses
AY		MIDCANAL	MIDINTCP	AF	MID Canal intercepted other flows
AZ		MIDCANAL	MIDNOMGWDIST	AF	MID nominal district groundwater pumping
BA		MIDCANAL	MIDUPSYSLOSSDIV	AF	MID Canal upper system losses including seepage from Modesto Lake
BB		MIDCANAL	MIDLKDIV	AF	Modesto Lake diversions (water treatment plant)
BC	55	MIDCANAL	MIDLKSTORCHNG	AF	Modesto Lake change in storage
BD	56	MIDCANAL	MIDFULLREQ	AF	Full canal demand of MID

 Table 5.4-1.
 Columnar Description for Parameters Listed in Output Worksheet.

Column	Col No	DSS - Part B	DSS - Part C	Units	Description
BE		TIDCANAL	TIDAGPDAW	AF	
BE	57 58	TIDCANAL	TIDAGPDAW	AF AF	Projected demand for applied water in TID Projected demand for municipal and industrial uses from TID (placeholder)
BG BH		TIDCANAL TIDCANAL	TIDFACT TIDNOMGWPRVT	PERCENT AF	Adjustment factor between TID PDAW and canal turnouts Nominal private groundwater pumping in TID
BI		TIDCANAL	TIDOPSPLS	AF	TID Canal operation spills
BJ		TIDCANAL	TIDLOSS	AF	TID Canal losses
BK			TIDINTCP	AF	TID Canal intercepted other flows
BL		TIDCANAL	TIDNOMGWDIST	AF	TID nominal district groundwater pumping
BM			TIDUPSYSLOSSDIV	AF	TID Canal upper system losses including seepage from Modesto Lake
BN			TIDLKDIV	AF	Turlock Lake diversions (placeholder)
BO		TIDCANAL	TIDLKSTORCHNG	AF	Turlock Lake change in storage
BP		TIDCANAL	TIDFULLREQ	AF	Full canal demand of TID
BQ		DONPEDRO	DPFACT	UNIT	Don Pedro water supply factor
BR			SFSJPLBASE	AF	CCSF San Joaquin Pipeline diversion - Comparison base
BS	71	SANFRAN	SFLOCALSTOR	AF	CCSF Local Bay Area System reservoir storage
BT	72	SANFRAN	SFSJPL	AF	CCSF San Joaquin Pipeline diversion - scenario
BU	73	SANFRAN	SFTOTSYSSTOR	AF	CCSF total system reservoir storage
BV	74	SANFRAN	SFTOTTRSYSSTOR	AF	CCSF total Tuolumne River system reservoir storage
BW	75	SANFRAN	SFSUPPREL	UNIT	CCSF total supplemental release
BX	76	SANFRAN	SFSUPPTAB	UNIT	CCSF supplemental release directed by year type table
BY	77	SANFRAN	TRIGGER	UNIT	CCSF water supply action level
BZ	78	SANFRAN	WBBAL	UNIT	CCSF Water Bank Account balance
CA	79	HETCH	HATCH-GRVLND	CFS	Moccasin Hatchery and Groveland flow requirements
CB	80	HETCH	HATCH-RTRN	CFS	Return flow to Tuolumne River from Mocassin Hatchery
CC	81	HETCH	RELEASE-MINQ1	CFS	Hetch Hetchy Reservoir flow requirement (below dam) prior to Canyon Tunnel stipulation
CD	82	HETCH	RELEASE-TOTMINQ	CFS	Hetch Hetchy Reservoir flow requirement (below dam) after consideration of Canyon Tunnel flow
CE	83	HETCH	RELEASE-7DAYENCRADVISE	CFS	Hetch Hetchy Reservoir advised release for target storage enchroachment
CF	84	HETCH	RELEASE-SNOWADVISE	CFS	Hetch Hetchy Reservoir advised release for spring-time snowmelt release
CG			RELEASE-TOTAL	CFS	Hetch Hetchy Reservoir total release
СН		HETCH	STORAGE	AF	Hetch Hetchy Reservoir storage
CI		HETCH	EVAP	AF	Hetch Hetchy Reservoir evaporation
CJ			STORAGE-SOFTTRG	AF	Hetch Hetchy Reservoir storage target
СК		LLOYD	RELEASE-MINSTRMQ	CFS	Lake Lloyd flow requirement (below dam)
CL		-	RELEASE-MINHOLM	CFS	Minimum Lake Lloyd release to Holm Powerplant
CM			RELEASE-7DAYENCRADVISE	CFS	Lake Lloyd advised release for target storage enchroachment
CN	-		RELEASE-SNOWADVISE	CFS	Lake Lloyd advised release for snowmelt release
CO			RELEASE-LLOYDONLYHOLM	CFS	Lake Lloyd release to Holm Powerplant (Lake Lloyd operation)
CP		-	HOLMAVAILEL	CFS	Available capacity at Holm Powerplant for Eleanor transfer
CQ		LLOYD	RELEASE-TOTHOLM	CFS	Total Holm Powerplant flow
CR		LLOYD	RELEASE-TOTHOLIN	CFS	Lake Lloyd total release
CS			STORAGE	AF	Lake Lloyd storage
СТ		LLOYD	EVAP	AF	Lake Lloyd evaporation
CU			STORAGE-SOFTTRG	AF	Lake Lloyd storage target
CV		ELEANOR	RELEASE-MINSTRMQ	CFS	Lake Eleanor flow requirement (below dam)
CW			RELEASE-7DAYENCRADVISE	CFS	Lake Eleanor advised release for target storage enchroachment
CW			RELEASE-SNOWADVISE	CFS	Lake Eleanor advised release for snowmelt release
CX				CFS	
CZ				CFS	Eleanor - Lloyd tunnel capacity
			FLOW-TUNNEL		Eleanor - Lloyd tunnel flow
DA		ELEANOR	RELEASE-STREAM	CFS	Lake Eleanor release to stream
DB		ELEANOR	RELEASE-TOTELEANOR	CFS	Lake Eleanor total release
DC		ELEANOR	STORAGE	AF	Lake Eleanor storage
DD		ELEANOR	EVAP	AF	Lake Eleanor evaporation
DE		ELEANOR	STORAGE-SOFTTRG	AF	Lake Eleanor storage target
DF		TUOLUMNERIVER	YEARMON	UNIT	Calendar year and month (YYYY.MM)
DG		LAGRANGE	CCSFLAGRANGERESP	AF	CCSF La Grange release responsibility
DH	112	TUOLUMNERIVER	SWITCHES	UNIT	Echo values of input from UserInput and Control worksheets

5.5 DSSAnyGroup Worksheet

This worksheet (DSSAnyGroup) provides plotting of up to ten parameters provided in worksheet Output or another equally formatted worksheet of results. One calendar year (the same year or different years) of data for a parameter can be plotted. The parameter(s) to be plotted are identified by reference worksheet name and column. Figure 5.5-1 is a snapshot of the identification parameters and result values.

	А	В	С	D	E	F	G	н		1	К	1	М	N
1	DSSAnyGroup		-											
2	This sheet illustrates	a CY of dai	ly results fr	om Model s	heets in gra	aphic forma	t.							
3	Axis Reference	1		1		2		2		2		2		1
4	Enter CY Graph Year:	1984		1984		1984		1984		1984		1984		1984
5	Enter Sheet Name:	OUTPUT1		OUTPUT2		OUTPUT2		OUTPUT1		OUTPUT		OUTPUT2		OUTPUT
6	Column:	#N/A		13		27		#N/A		26		26		#N/A
7	Enter Column:			М		AA				Z		Z		
				DONPEDRO		LAGRANGE				LAGRANGE		LAGRANGE		
				STORAGE -		RELEASE-				RELEASE-		RELEASE-		
8	Data Reference:	#REF!	Date	AF (OUTPUT2)	Date	TOTAL - CFS (OUTPUT2)	Date	#REF!	Date	MINQ - CFS (OUTPUT)	Date	MINQ - CFS (OUTPUT2)	Date	#REF!
_	Enter Scaler:	#NEF:	Date	1	Date	1	Date	1	Date	1	Date	1	Date	#NEF:
10	1-Jan-84	#REF!	1-Jan-84	1,765,400	1-Jan-84	8,681	1-Jan-84	#REF!	1-Jan-84	300	1-Jan-84	300	1-Jan-84	#REF!
	2-Jan-84	#REF!	2-Jan-84		2-Jan-84	· · · · ·		#REF!	2-Jan-84	300		300		
11				1,762,808		8,732		#REF!	2-Jan-84 3-Jan-84				2-Jan-84	
12 13	3-Jan-84 4-Jan-84	#REF! #REF!	3-Jan-84 4-Jan-84	1,759,443 1,757,150	3-Jan-84 4-Jan-84	8,758 8,773		#REF! #REF!	5-Jan-84 4-Jan-84	300 300	3-Jan-84 4-Jan-84	300 300	3-Jan-84 4-Jan-84	#REF! #REF!
15	4-Jan-64 5-Jan-84	#REF!	5-Jan-84	1,749,651	5-Jan-84	8,683		#REF!	5-Jan-84	300	4-Jan-84 5-Jan-84	300	4-Jan-84 5-Jan-84	#REF!
14	6-Jan-84	#REF!	6-Jan-84	1,741,186	6-Jan-84	8,683		#REF!	6-Jan-84	300	6-Jan-84	300	6-Jan-84	#REF!
16	7-Jan-84	#REF!	7-Jan-84	1,735,636	7-Jan-84	8,683	7-Jan-84	#REF!	7-Jan-84	300	7-Jan-84	300	7-Jan-84	#REF!
17	8-Jan-84	#REF!	8-Jan-84	1,726,314		8,683		#REF!	8-Jan-84	300	8-Jan-84	300	8-Jan-84	#REF!
18	9-Jan-84	#REF!	9-Jan-84	1,718,101	9-Jan-84	8,683		#REF!	9-Jan-84	300	9-Jan-84	300	9-Jan-84	#REF!
19	10-Jan-84	#REF!	10-Jan-84	1,708,161	10-Jan-84	8,683		#REF!	10-Jan-84	300	10-Jan-84	300	10-Jan-84	#REF!
20	11-Jan-84	#REF!	11-Jan-84	1,696,327	11-Jan-84	8,683	11-Jan-84	#REF!	11-Jan-84	300	11-Jan-84	300	11-Jan-84	#REF!
21	12-Jan-84	#REF!	12-Jan-84	1,691,421	12-Jan-84	5,421	12-Jan-84	#REF!	12-Jan-84	300	12-Jan-84	300	12-Jan-84	#REF!
22	13-Jan-84	#REF!	13-Jan-84	1,686,396	13-Jan-84	5,421	13-Jan-84	#REF!	13-Jan-84	300	13-Jan-84	300	13-Jan-84	#REF!
23	14-Jan-84	#REF!	14-Jan-84	1,680,358	14-Jan-84	5,421	14-Jan-84	#REF!	14-Jan-84	300	14-Jan-84	300	14-Jan-84	#REF!
24	15-Jan-84	#REF!	15-Jan-84	1,674,328	15-Jan-84	5,421	15-Jan-84	#REF!	15-Jan-84	300	15-Jan-84	300	15-Jan-84	#REF!
25	16-Jan-84	#REF!	16-Jan-84	1,669,263	16-Jan-84	5,421	16-Jan-84	#REF!	16-Jan-84	300	16-Jan-84	300	16-Jan-84	#REF!

Figure 5.5-1. DSSAnyGroup Worksheet Input Interface.

Values are plotted to either the primary y-axis or secondary y-axis. The "axis reference" indicates to which axis the value will be plotted by default. The designation of y-axis assignment is not modified by this field, and the user must edit the series data within the plot to change the y-axis assignment, graph type or line or shape characteristics. The "enter graph year" is a user entry. The same year or different year of a parameter or multiple parameters can be plotted. "Sheet name" is a user entry, and identifies from which Output-formatted worksheet the parameter is to be acquired. The "enter column" entry identifies from which column the parameter occurs. Refer to Table 5.4-1 of the description for worksheet Output for the identification of the column associated with each parameter. Upon proper entry of a parameter a return of the parameter's label and source worksheet will occur in the "data reference" field. Values for the specified calendar year will also be returned in the data field. If a plotting position is not used, a "#VALUE!" or "#REF!" will be returned. The "scaler" field is provided to allow the conversion or scaling of the data returned from the result worksheet. For instance, if the daily data occurs in the result worksheet in units of daily average flow (cfs) it could be plotted in units of daily volume (acre-feet) by entering the conversion factor of 1.983471. The entry in the field acts as a multiplier to the value occurring in the result worksheet. This field can also be used to scale two different "order of magnitude" parameters to use the same y-axis.

The results of up to ten parameters will be plotted. An example of the several plotted parameters from two different studies is shown in Figure 5.5-2.

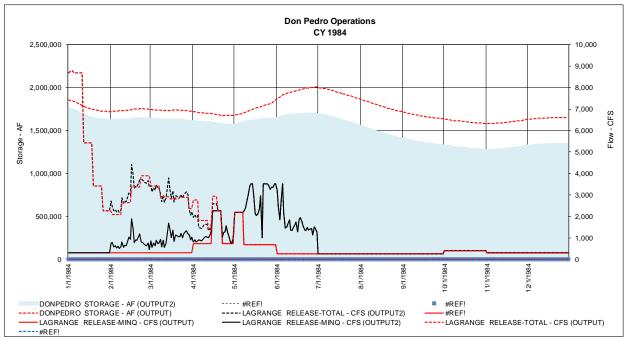


Figure 5.5-2. DSSAnyGroup Worksheet Plotting.

Unused plotting positions will appear with values plotted at "zero" and will have legends of "#VALUE!" or "#REF!". To create graphs without unused positions a copy of the plot can be made and positioned elsewhere in the worksheet. The unwanted positions can then be deleted from the plot.

5.6 DSSMonthTable Worksheet

This worksheet (DSSMonthTable) provides summation or averaging, and plotting of up to four parameters provided in worksheet Output or another equally formatted worksheet of results. The function of this worksheet is to provide a synthesis of the daily result data into monthly results thus reducing the handling and display of over 14,000 values for each parameter (39 years of days) to 468 values (39 years of months).

The parameter(s) to be plotted or tabled are identified by reference worksheet name and column, very similarly to the method identified for worksheet DSSAnyGroup. Figure 5.6-1 is a snapshot of the identification parameters and result values.

Each parameter is tabled and plotted separately for the entire 39-year simulation period. "Sheet name" is a user entry, and identifies from which Output-formatted worksheet the parameter is to be acquired. The "enter column letter" entry identifies from which column the parameter occurs. Refer to Table 5.4-2 of the description for worksheet Output for the identification of the column associated with each parameter. Upon proper entry of a parameter a return of the parameter's label, source worksheet and the native unit of the parameter will occur. Depending on need, the "conversion" entry is provided. This entry, a keyed value of 0 to 5, directs the worksheet on the handling of the daily data. An entry of 1 will direct the worksheet to sum the daily data into monthly increments in the parameter's native units (e.g., daily acre-feet into monthly volumes).

An entry of 1 will convert the daily data from a native unit of flow (cfs) into monthly volumes of acre-feet. An entry of 2 will convert the daily data from a native unit of volume (acre-feet) into a monthly sum of daily flow in units of cfs. An entry of 3 will act as an entry of 1 except convert the result into monthly volumes with units of 1,000 acre-feet. An entry of 4 will table and plot the daily value associated with the last day of each month in its native unit, and is primarily intended to analyze reservoir storage. An entry of 5 will report the average of daily values within a month. Depending on the entry in the conversion field, the converted unit will be returned to "converted unit" field. Values for the each month of the simulation period will also be returned in the data field. If a plotting position is not used, a "#VALUE!" or "#REF!" will be returned. A "scaler" field is also provided for each parameter (in the row above the data fields) to allow the conversion or scaling of the data returned from the result worksheet. The results of up to four parameters will be tabled and plotted. Examples of the formats of reports are shown below.

5				Conversion	n Key:		
6				0	1≫1	Native	1
7				1	CFS >> AF	AF	1.9834700
8				2	AF >> CFS	CFS	0.5041669
9				3	CFS >> TAF	TAF	0.0019835
10				4	EOM Stor	AF	1
11				5	Ave Day	Native	1
12	Enter C	onversion (()-5):	4	4	4	4
13	Ent	er Sheet Na	me:	Output	Output1	Output3c	Output2b
14	Enter	r Column Let	tter:	М	М	М	М
15		Column	No:	13	13	13	13
16		La	bel:	O STORAG	D STORAGE	STORAGE	STORAGE
17		Native L	Jnit:	AF	AF	AF	AF
18		Convert L	Jnit:	AF	AF	AF	AF
19	Index	Date	Day	1	1	1	1
20	1970.10	10/1/1970	Т	1,666,767	1,666,767	1,666,767	1,666,969
21	1970.10	10/2/1970	F	1,664,567	1,664,567	1,664,567	1,664,971
22	1970.10	10/3/1970	S	1,662,719	1,662,719	1,662,719	1,663,323
23	1970.10	10/4/1970	S	1,659,892	1,659,892	1,659,892	1,660,699
24	1970.10	10/5/1970	М	1,656,745	1,656,745	1,656,745	1,657,753
25	1970.10	10/6/1970	Т	1,654,119	1,654,119	1,654,119	1,655,329

Figure 5.6-1. DSSMonthTable Worksheet Input Interface.

5.6.1 Standardized Tables

An example of a standardized table for the illustration of results is shown in Table 5.6-1. (Table 1 Form). In this example the current minimum daily flow requirement at La Grange Bridge has been synthesized into monthly volumes for the simulation period, and water year totals and for the annual period February through January.

Conversion (0-5):	1
Sheet Name:	Output1
Column Letter:	Z
Column No:	26
Label:	ELEASE-MI
Native Unit:	CFS
Convert Unit:	AF

Table 5.6-1.Table 1 Form (units of volume).

	_
Table	1

LAGRANGE RELEASE-MINQ (Output1)

LAGRANGE I AF														
WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	Feb-Jan
1971	24,397	17,851	18,447	18,447	16,661	18,447	66,685	63,515	4,463	4,612	4,612	4,463	262,598	228,631
1972	13,240	10,413	10,760	10,760	9,719	10,760	30,288	29,251	2,975	3,074	3,074	2,975	137,292	128,713
1973	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	240,823	283,369
1974	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1975	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1976	24,397	17,851	18,447	18,447	16,661	18,447	20,153	19,749	2,975	3,074	3,074	2,975	166,250	122,217
1977	7,736	8,926	9,223	9,223	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	94,000	94,000
1978	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,336	283,369
1979	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1980	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1981	24,397	17,851	18,447	18,447	16,661	18,447	29,339	28,532	4,463	4,612	4,612	4,463	190,269	156,718
1982	12,744	10,711	11,068	11,068	9,997	11,068	64,241	61,936	14,876	15,372	15,372	14,876	253,329	286,880
1983	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1984	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1985	24,397	17,851	18,447	18,447	16,661	18,447	34,656	33,346	4,463	4,612	4,612	4,463	200,400	157,854
1986	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	240,823	283,369
1987	24,397	17,851	18,447	18,447	16,661	18,447	24,481	23,806	2,975	3,074	3,074	2,975	174,636	130,603
1988	7,736	8,926	9,223	9,223	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	94,000	94,000
1989	7,736	8,926	9,223	9,223	8,331	9,223	25,991	25,222	2,975	3,074	3,074	2,975	115,975	115,975
1990	7,736	8,926	9,223	9,223	8,331	9,223	19,362	19,008	2,975	3,074	3,074	2,975	103,131	103,131
1991	7,736	8,926	9,223	9,223	8,331	9,223	25,870	25,109	2,975	3,074	3,074	2,975	115,740	115,740
1992	7,736	8,926	9,223	9,223	8,331	9,223	19,995	19,601	2,975	3,074	3,074	2,975	104,357	104,357
1993	7,736	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	239,336	283,369
1994	24,397	17,851	18,447	18,447	16,661	18,447	25,903	25,140	2,975	3,074	3,074	2,975	177,391	134,846
1995	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	240,823	283,369
1996	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1997	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1998	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
1999	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
2000	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
2001	24,397	17,851	18,447	18,447	16,661	18,447	28,572	27,642	4,463	4,612	4,612	4,463	188,612	146,067
2002	9,223	8,926	9,223	9,223	8,331	9,223	32,729	31,539	4,463	4,612	4,612	4,463	136,567	136,567
2003	9,223	8,926	9,223	9,223	8,331	9,223	55,641	53,161	4,463	4,612	4,612	4,463	181,101	189,680
2004	13,240	10,413	10,760	10,760	9,719	10,760	28,696	27,758	4,463	4,612	4,612	4,463	140,257	131,678
2005	9,223	8,926	9,223	9,223	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	240,823	283,369
2006	24,397	17,851	18,447	18,447	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	300,923	300,923
2007	24,397	17,851	18,447	18,447	16,661	18,447	26,085	25,310	2,975	3,074	3,074	2,975	177,743	133,710
2008	7,736	8,926	9,223	9,223	8,331	9,223	27,470	26,609	2,975	3,074	3,074	2,975	118,840	120,328
2009	9,223	8,926	9,223	9,223	8,331	9,223	42,919	41,235	4,463	4,612	4,612	4,463	156,452	
Average	16,957	13,625	14,079	14,079	12,717	14,079	46,531	44,910	9,078	9,381	9,381	9,078	213,897	214,289
Min	7,736	8,926	9,223	9,223	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	94,000	94,000
Max	24,397	17,851	18,447	18,447	16,661	18,447	66,685	63,515	14,876	15,372	15,372	14,876	300,923	300,923

The values could also be tabled in the parameter's native unit of flow (cfs) representing the average daily flow requirement during each month. Annual totals are not included as the value is non-sensible. Table 5.6-2 illustrates the same parameter at before except the units are provided in average daily for a month.

Conversion (0-5):	5
Sheet Name:	Output1
Column Letter:	Z
Column No:	26
Label:	ELEASE-MI
Native Unit:	CFS
Convert Unit:	Native

Table 5.6-2. Table 1 Form (units of flow).

FS WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	verage Da Aug	Sep
1971	397	300	300	300	300	300	1,121	1,033	75	75	75	<u> </u>
1972	215	175	175	175	169	175	509	476	50	50	50	5
1972	150	175	175	175	150	175	1,080	1,007	250	250	250	25
1973	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1974	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1975	397	300	300	300	290	300	339	321	50	50	50	5
1970	126	150	150	150	150	150	246	237	50	50	50	5
1977	120	150	150	150	150	150	1,080	1,007	250	250	250	25
1978	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1979	397	300	300	300	290	300	1,080	1,007	250	250	250	
1980	397	300	300	300	300	300	493	464	250 75	250 75	250 75	25 7
1981	207	180	180	180	180	180	1,080	1,007	250	250	250	25
1982	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1983 1984	397 397						,	,		250 250	250 250	25
		300	300	300	290	300	1,080	1,007	250			
1985	397	300	300	300	300	300	582	542	75	75	75	7
1986	150	150	150	150	150	150	1,080	1,007	250	250	250	25
1987	397	300	300	300	300	300	411	387	50	50	50	5
1988	126	150	150	150	145	150	246	237	50	50	50	5
1989	126	150	150	150	150	150	437	410	50	50	50	5
1990	126	150	150	150	150	150	325	309	50	50	50	5
1991	126	150	150	150	150	150	435	408	50	50	50	5
1992	126	150	150	150	145	150	336	319	50	50	50	5
1993	126	150	150	150	150	150	1,080	1,007	250	250	250	25
1994	397	300	300	300	300	300	435	409	50	50	50	5
1995	150	150	150	150	150	150	1,080	1,007	250	250	250	25
1996	397	300	300	300	290	300	1,080	1,007	250	250	250	25
1997	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1998	397	300	300	300	300	300	1,080	1,007	250	250	250	25
1999	397	300	300	300	300	300	1,080	1,007	250	250	250	25
2000	397	300	300	300	290	300	1,080	1,007	250	250	250	25
2001	397	300	300	300	300	300	480	450	75	75	75	7
2002	150	150	150	150	150	150	550	513	75	75	75	-
2003	150	150	150	150	150	150	935	865	75	75	75	-
2004	215	175	175	175	169	175	482	451	75	75	75	
2005	150	150	150	150	150	150	1,080	1,007	250	250	250	2
2006	397	300	300	300	300	300	1,080	1,007	250	250	250	2
2007	397	300	300	300	300	300	438	412	50	50	50	ļ
2008	126	150	150	150	145	150	462	433	50	50	50	ļ
2009	150	150	150	150	150	150	721	671	75	75	75	
Average	276	229	229	229	227	229	782	730	153	153	153	1
Min	126	150	150	150	145	150	246	237	50	50	50	ļ
Max	397	300	300	300	300	300	1,121	1,033	250	250	250	2

For each parameter the sequential, the chronological annual values and associated monthly values are also grouped by water type, in descending order of annual runoff. The rank ordering of the years within the simulation period is established by the naming of 6 year types, wet, above normal, normal, below normal, dry and critical. Using the water year runoff for the years 1921 through 2011 (91 years), the years were rank ordered from wettest to driest. The wettest 20 percent of the years (18 years) are designated the wet year type. The next wettest 18 years are designated the above normal year type. And so on for the normal and below normal year types.

The driest 20 percent of years are split between the dry and critical year types. After the demarcation occurs for each year the data set is reduced to only the 1971 through 2009 modeling period (39 years). A switch at cell X216 directs the monthly sequence of the year. For instance, if the year is to begin February 1 of the year and continue through January of the following year, the switch would be set to "Feb". The switch can be set to any month February (Feb) through June (Jun). The first form of standardized table (Table 1a Form) (Figure 5.6-3) for this information follows, which identifies the year type associated with each chronologically-based listed year. Averages for each year type follow the listing.

able 5					unonogi	carj.								
	Table 1a													
Prelim	LAGRANGE	RELEASE-MI	INQ (Outpi	ut1)										
Relicense	AF													
Yr-Type	Yr Begin	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Total
3	1971	16,661	18,447	66,685	63,515	4,463	4,612	4,612	4,463	13,240	10,413	10,760	10,760	228,63
4	1972	9,719	10,760	30,288	29,251	2,975	3,074	3,074	2,975	9,223	8,926	9,223	9,223	128,71
3	1973	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
2	1974	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
2	1975	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
6	1976	16,661	18,447	20,153	19,749	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	122,21
6	1970	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	94,00
1	1978	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
3	1979	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
1	1979	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
5	1980		18,447	29,339	28,532	4,463	4,612	4,612	4,463	12,744		18,447	18,447	156,71
		16,661									10,711		-	
1	1982	9,997	11,068	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	286,88
1	1983	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
2	1984	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
4	1985	16,661	18,447	34,656	33,346	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	157,85
1	1986	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
6	1987	16,661	18,447	24,481	23,806	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	130,60
6	1988	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	94,00
4	1989	8,331	9,223	25,991	25,222	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	115,97
5	1990	8,331	9,223	19,362	19,008	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	103,13
4	1991	8,331	9,223	25,870	25,109	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	115,74
6	1992	8,331	9,223	19,995	19,601	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	104,35
2	1993	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
5	1994	16,661	18,447	25,903	25,140	2,975	3,074	3,074	2,975	9,223	8,926	9,223	9,223	134,84
1	1995	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
2	1996	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
1	1997	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
1	1998	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
2	1999	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
3	2000	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
4	2001	16,661	18,447	28,572	27,642	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	146,06
3	2002	8,331	9,223	32,729	31,539	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	136,56
3	2002	8,331	9,223	55,641	53,161	4,463	4,612	4,612	4,463	13,240	10,413	10,760	10,760	189,68
4	2003	9,719	10,760	28,696	27,758	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	131,67
1	2004	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,36
1	2003	16,661	9,223 18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,92
5	2008	16,661	18,447	26,085	25,310	2,975	3,074	3,074					9,223	
5 4	2007	8,331	9,223	26,085	26,609	2,975	3,074	3,074	2,975 2,975	7,736 9,223	8,926 8,926	9,223 9,223	9,223	133,71 120,32
										9,223	0,920	9,223	9,223	120,32
3	2009	8,331	9,223	42,919	41,235	4,463	4,612	4,612	4,463					
		/INQ (Outpu							C	0.1	N	D	1	T !
Water Year		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Total
W	1	12,663	14,019	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	292,49
AN	2	15,273	16,909	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	297,99
Ν	3	11,901	13,176	55,814	53,608	8,926	9,223	9,223	8,926	18,149	13,884	14,347	14,347	240,01
BN	4	11,108	12,298	28,792	27,848	3,613	3,733	3,733	3,613	8,798	8,926	9,223	9,223	130,90
D	5	14,579	16,141	25,172	24,497	3,347	3,459	3,459	3,347	9,360	9,372	9,684	9,684	132,10
С	6	11,663	12,913	18,786	18,467	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	109,03
All		12,717	14,079	46,531	44,910	9,078	9,381	9,381	9,078	16,762	13,514	13,964	13,964	214,28

Table 5.6-3.Table 1a Form (chronological).

The second form of report (Table 1b Form) for the water year type based ranking is shown in Figure 5.6-4. This form rank orders the years according to descending volume of watershed runoff, named by the convention described above. The same averaging results occur for this format of report.

							8,		5		,			
	Table 1b													
Prelim	LAGRANGE	E RELEASE-N	/INQ (Outp	out1)										
Relicense														
Yr-Type	Yr Begin	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Total
W	1983	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
W	1995	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
W	1982	9,997	11,068	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	286,880
W	1998	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
W	2006	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
W	1997	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
W	1980	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
W	1986	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
W	2005	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
W	1978	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
AN	1984	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
AN	1993	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
AN	1996	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
AN	1974	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
AN	1999	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
AN	1975	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
N	1973	8,331	9,223	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	283,369
N	2000	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
N	1979	16,661	18,447	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	300,923
N	1971	16,661	18,447	66,685	63,515	4,463	4,612	4,612	4,463	13,240	10,413	10,760	10,760	228,631
N	2009	8,331	9,223	42,919	41,235	4,463	4,612	4,612	4,463					
N	2003	8,331	9,223	55,641	53,161	4,463	4,612	4,612	4,463	13,240	10,413	10,760	10,760	189,680
N	2002	8,331	9,223	32,729	31,539	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	136,567
BN	1989	8,331	9,223	25,991	25,222	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	115,975
BN	2004	9,719	10,760	28,696	27,758	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	131,678
BN	1985	16,661	18,447	34,656	33,346	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	157,854
BN	1972	9,719	10,760	30,288	29,251	2,975	3,074	3,074	2,975	9,223	8,926	9,223	9,223	128,713
BN	2008	8,331	9,223	27,470	26,609	2,975	3,074	3,074	2,975	9,223	8,926	9,223	9,223	120,328
BN	1991	8,331	9,223	25,870	25,109	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	115,740
BN	2001	16,661	18,447	28,572	27,642	4,463	4,612	4,612	4,463	9,223	8,926	9,223	9,223	146,067
D	1981	16,661	18,447	29,339	28,532	4,463	4,612	4,612	4,463	12,744	10,711	11,068	11,068	156,718
D	2007	16,661	18,447	26,085	25,310	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	133,710
D	1990	8,331	9,223	19,362	19,008	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	103,131
D	1994	16,661	18,447	25,903	25,140	2,975	3,074	3,074	2,975	9,223	8,926	9,223	9,223	134,846
C	1994	8,331	9,223	19,995	19,601	2,975	3,074	3,074	2,975	7,736	8,920	9,223	9,223	104,357
c	1992	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	94,000
c	1988	16,661	9,223 18,447	20,153	14,389	2,975	3,074	3,074	2,975	7,736	8,920	9,223	9,223	122,217
c	1970	16,661	18,447	20,133	23,806	2,975	3,074	3,074	2,975	7,736	8,920	9,223	9,223	130,603
c	1987	8,331	9,223	14,649	14,589	2,975	3,074	3,074	2,975	7,736	8,920	9,223	9,223	94,000
-		0,331 MINQ (Outp		14,043	14,303	2,313	3,074	5,074	2,313	1,150	0,920	3,223	3,223	34,000
Water Yea		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Total
Water fea	ar type 1	12,663	14,019	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	292,497
	1 2													292,497 297,997
AN		15,273	16,909	64,241	61,936	14,876	15,372	15,372	14,876	24,397	17,851	18,447	18,447	
N	3	11,901	13,176	55,814	53,608	8,926	9,223	9,223	8,926	18,149	13,884	14,347	14,347	240,016
BN	4	11,108	12,298	28,792	27,848	3,613	3,733	3,733	3,613	8,798	8,926	9,223	9,223	130,908
D	5	14,579	16,141	25,172	24,497	3,347	3,459	3,459	3,347	9,360	9,372	9,684	9,684	132,101
C	6	11,663	12,913	18,786	18,467	2,975	3,074	3,074	2,975	7,736	8,926	9,223	9,223	109,035
All		12,717	14,079	46,531	44,910	9,078	9,381	9,381	9,078	16,762	13,514	13,964	13,964	214,289

 Table 5.6-4.
 Table 1a Form (year type ranking, descending order of wetness).

5.6.2 Standardized Graphs

Several standardized graphs are also provided for each parameter. The first form of graph provides a trace of the monthly sequence of data developed for the standardized chronological table. Figure 5.6-2 illustrates the minimum flow requirement at La Grange Bridge synthesized as monthly volume during the simulation.

Figure 5.6-2. Chronological Illustration of Parameter.

A user-defined graph is also available to depict a particular column of data from the water yearbased standardized table (Table 1 Form) described above. A column of interest within the Table 1 standardized table is selected (such as column AI representing a water year total volume) in cell AN116 to display the 39 annual values. Figure 5.6-3 illustrates this form of graphic.

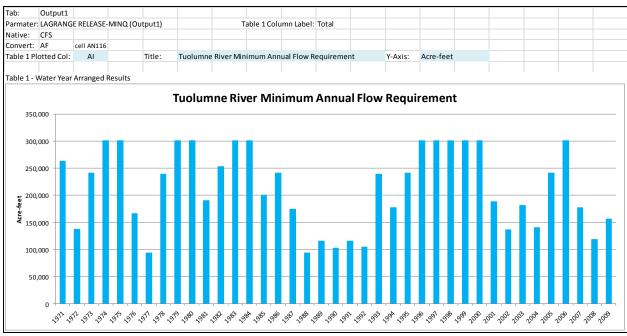


Figure 5.6-3. Annual Parameter Graphic – Tagged to Water Year Table.

A similar display of columnar results can be keyed to the chronological sequence year table described above. Entry of the desired column of information from the table (e.g., Table 1a) is done at cell AN143. Figure 5.6-4 illustrates this form of graphic.

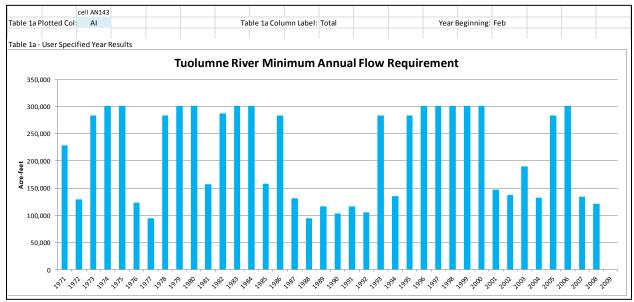


Figure 5.6-4. Annual Parameter Graphic – Tagged to Chronological Sequence Year Table.

The third version of standardized graph for the same information displays results from a column of a table that rank-ordered the years of simulation according to descending runoff (e.g., Table 1b). Entry of the desired column of information from that table is done at cell AN170, with results exemplified by the following graph. Figure 5.6-5 illustrates this form of graphic.

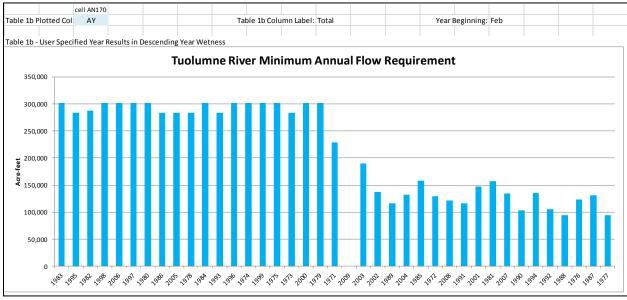


Figure 5.6-5. Annual Parameter Graphic–Tagged to Rank-ordering of Results by Year Wetness.

The same tables and graphics are provided for each of the three other parameters. Additionally, standardized graphics are provided for a columnar comparison of Table 1 and Table 2 values. An example of those graphics is shown below, with the column(s) of interest defined by the Table 1-specific and Table 2-specific entries. Figure 5.6-6 illustrates this form of graphic.

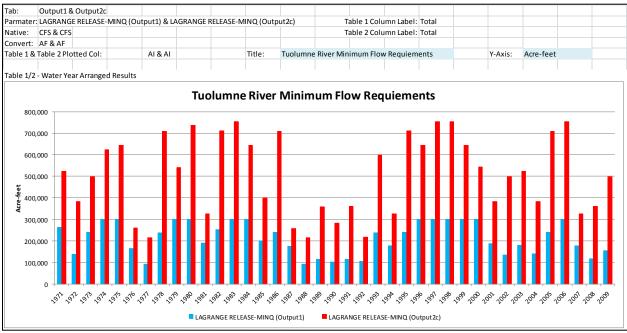


Figure 5.6-6. Annual Parameter Graphic – Comparison of 2 Tables.

A standardized graphic comparison of Table 1, Table 2, and Table 3, and all 4 tables of values is also provided. The four-way comparison graphs are shown in Figure 5.6-7.

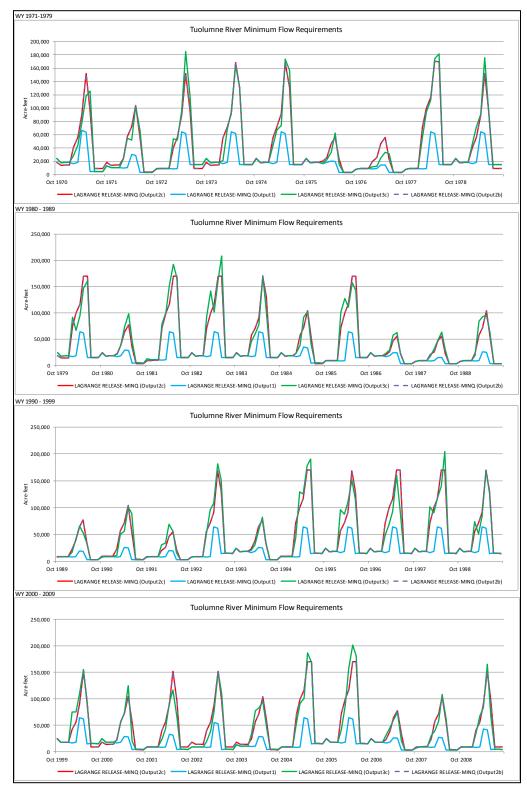


Figure 5.6-7. Comparison of 4 Tables.

5.7 Switches Worksheet

This worksheet (Switches) enables the documentation of all input assumptions and values of a particular study. Almost all user defined parameters entered into the UserInput and Control worksheets are provided as values to the Output worksheet. These parameters are echoed to the Switches worksheet upon identification of worksheet Output or another equally formatted worksheet of results. Figure 5.7-1 is a snapshot of the entry cell for the referenced output worksheet. The results shown in worksheet Switches mirror the formats of worksheet UserInput and Control.

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1																		
2		User D	efined	Input														
3		Variables	Affected k	by User Ent	ered in Blu	e Shaded C	ells											
4																		
5		Contents:																
6			Section 1	- Alternati	ve Flow Re	quirement	s at La Gran	ge Bridge										
7			Section 2	- Alternati	ve Modesto	and Turlo	ck Canal Di	versions										
8			Section 3	- Supplem	ental Relea	se from CC	SF Upstrea	m Reservoi	irs	This is the	only acce	ssable cell	in this wo	rksheet. Er	nter refere	nce DSS Ou	itput works	heet
9			Section 4	- Alternati	ve CCSF Sar	I Joaquin P	ipeline				for echo o	of input as	sumptions	from User	Input and (Control wo	rksheets.	
10									-									
11		(UI 1.00)		Enter Stud	dy Output V	Vorksheet:	Output		DSS outpu	it workshee	et							
12																		

Figure 5.7-1. Switches Worksheet Input Interface.

5.8 XXGroup Worksheets

These worksheets provide graphical display of a single calendar year of operation for several model components. The model components represent groupings of physical features of the Tuolumne River system that make up logical components of operation. The model components are:

- Don Pedro Reservoir, the Districts' facilities, and the Lower Tuolumne River Modeled with computational worksheet DonPedro and displayed by worksheet DPGroup
- Hetch Hetchy Reservoir, the San Joaquin Pipeline and downstream releases Modeled with computational worksheet SFHetchHetchy and displayed by worksheet HHGroup
- Lake Lloyd, Holm Powerhouse and its downstream releases Modeled with computational worksheet SFLloyd and displayed by worksheet LloydGroup
- Lake Eleanor, the Eleanor-Cherry Tunnel and its downstream releases Modeled with computational worksheet SFEleanor and displayed by worksheet ELGroup

<u>CCSF Water Bank and Supplemental Releases</u> Modeled with computational worksheet SFWaterBank and displayed by worksheet WBGroup

CCSF System Storage displayed by worksheet SFSysGroup.

Both the Districts' and CCSF's operations are additionally displayed for the 1986 through 1994, or any 9-year period by worksheets DPGroup86_94 and SFGroup86_94. These component-specific display worksheets provide plotting of numerous parameters provided in the computation worksheets. One calendar year (the same year) of data for all parameters can be plotted. These display worksheets are similar to worksheet DSSAnyGroup except they rely upon the data being computed by the current study within the computational worksheets. A comparison between the same parameter from two different studies is not possible. Those comparisons are intended to be made through the worksheet Output and its tools. The parameter(s) to be plotted are identified by reference worksheet name and column. Figure 5.8-1 is a snapshot of the identification parameters and result values is shown below for worksheet DPGroup.

Values are plotted to either the primary y-axis or secondary y-axis. The "axis reference" indicates to which axis the value will be plotted by default. The designation of y-axis assignment is not modified by this field, and the user must edit the series data within the plot to change the y-axis assignment, graph type or line or shape characteristics. The "enter graph year" is a user entry. The same year or different year of a parameter or multiple parameters can be plotted. "Sheet name" is a user entry, and identifies from which Output-formatted worksheet the parameter is to be acquired. The "enter column" entry identifies from which column the parameter occurs. Upon proper entry of a parameter a return of the parameter's label and source worksheet will occur in the "data reference" field. Values for the specified calendar year will also be returned in the data field. If a plotting position is not used, a "#VALUE" or "#REF" will be returned. The "scaler" field is provided to allow the conversion or scaling of the data returned from the result worksheet. For instance, if the daily data occurs in the result worksheet in units of daily average flow (cfs) it could be plotted in units of daily volume (acre-feet) by entering the conversion factor of 1.983471. The entry in the field acts as a multiplier to the value occurring in the result worksheet. This field can also be used to scale two different "order of magnitude" parameters to use the same y-axis. An example of the several plotted parameters from an active scenario study is shown in Figure 5.8-2.

a	A	В	С	D	E	F	G	Н
1	DPGroup							
2	This sheet illustrates a C	Y of daily res	ults for Don F	^D edro operat	ions in graph	nic format.		
3	Axis Reference	1	1	2	2	2	2	2
4	Enter CY Graph Year:	1983	1983	1983	1983	1983	1983	1983
5	Enter Sheet Name:	DonPedro	DonPedro	DonPedro	DonPedro	DonPedro	DonPedro	DonPedro
6	Column:	28	72	5	7	13	15	70
7	Enter Column:	AB	BT	E	G	М	0	BR
	D . D /	COE Rainflood	Don Pedro Storage -	Reservoir	Minimum La Grange Req Release -	MID Canal -	TID Canal -	La Grange Release -
8	Data Reference:	Space - AF	AF	Inflow - CFS	CFS	CFS	CFS	CFS
9	Enter Scaler:	1	1	1	1	1	1	1
10	1-Jan-83	1,690,000	1,752,672	2,688	300	70	98	4,301
11	2-Jan-83	1,690,000	1,748,069	2,138	300	70	98	4,301
12	3-Jan-83	1,690,000	1,742,799	1,801	300	70	98	4,301
13	4-Jan-83	1,690,000	1,737,746	1,911	300	70	98	4,301
14	5-Jan-83	1,690,000	1,732,665	1,897	300	70	98	4,301
15	6-Jan-83	1,690,000	1,730,261	1,501	300	70	98	2,555
16	7-Jan-83	1,690,000	1,728,957	2,055	300	70	98	2,555
17	8-Jan-83	1,690,000	1,726,043	1,244	300	70	98	2,555
18	9-Jan-83	1,690,000	1,724,497	1,933	300	70	98	2,555

Figure 5.8-1. DPGroup Worksheet Input Interface.

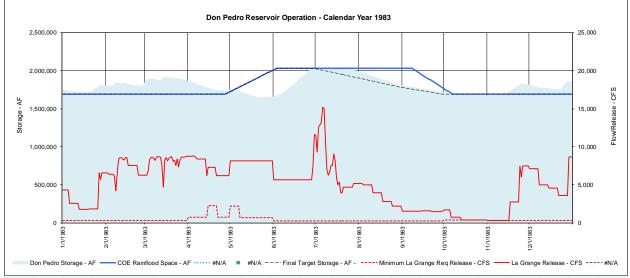


Figure 5.8-2. DPGroup Worksheet Plotting.

Unused plotting positions will appear with values plotted at "zero" and will have legends of "#VALUE!", "#REF!" or "#N/A". To create graphs without unused positions a copy of the plot can be made and positioned elsewhere in the worksheet. The unwanted positions can then be deleted from the plot.

5.9 ModelYearofDaily Worksheet

This worksheet (ModelYearofDaily) provides graphical and table display of the daily result for a single calendar or water year for any parameter within a Model component worksheet (e.g., worksheet DonPedro). A snapshot of the data entry interface and a sample of graphical display are shown in Figure 5.9-1.

1	A	В	С	D	E	F	G	Н	1	J	K	L		М	N	0	0	Р	Q	R	S	T		U	V
1	ModelY	earofDail	1																						
2	This she	et illustra	tes a year of da	ly results fro	om Model work	sheets i	n CY or V	VY table a	and graphic	format.															
3																				Addition	al Graph I	Data for Ye	ear Type	2	
4		Enter CY:	1991																	199	1 60-20-2	20 Year Ty	/pe 1	1955459	Critical
5	Ent	er Sheet:	DonPedro		_																Followi	ng			
6	Enter	Column:	4	G				Y Axis Ti	tle: CFS									WY:	199	L 199	0 60-20-2	20 Year Ty	/pe 1	1514587	Critical
			Minimum La		Minimum La																				
			Grange Req		Grange Req																				
7			Release - CFS		Release - CFS																				
		lendar Yr		Water Yr																					
9		1-Jan-91	150	1-Oct-90												_									
10		2-Jan-91	150	2-Oct-90										Minimu	m La		e Req Re	elease	- CFS						
11		3-Jan-91	150	3-Oct-90												CY 1	1991								
12		4-Jan-91	150	4-Oct-90				1,000 T	Critic	a/►	Critical				-			-							
13		5-Jan-91	150	5-Oct-90				900 -				- r	•	_	_			_			_				
14		6-Jan-91	150	6-Oct-90				800 -					++		_			_			_				
15		7-Jan-91	150	7-Oct-90				700					++	_	_			_						-	
16		8-Jan-91	150	8-Oct-90				600					++	-	_			_						_	
17 18		9-Jan-91 10-Jan-91	150 150	9-Oct-90 10-Oct-90			CFS	500 -					++	-	_									-	
18		10-Jan-91 11-Jan-91	150	10-Oct-90 11-Oct-90				400					++	-	_			_			_			-	
20		12-Jan-91	150	12-Oct-90				300					Ц	_				_						-	
20		13-Jan-91	150	12-Oct-90 13-Oct-90				200				-			_			_			_			-	
22		14-Jan-91	150	14-Oct-90				100			1	-						_						1	
23		15-Jan-91	150	15-Oct-90				0													- i				
24		16-Jan-91	150	16-Oct-90				10010		8	1817	1813	85		85	8	8	815		8	1881/	1664/		1001/	
25	Т	17-Jan-91	150	17-Oct-90				5		n	8	2	a a		8	8	2	8			à	1/H		a	
26	F 1	18-Jan-91	150	18-Oct-90	126									N	linimum L	a Grange R	eq Release - C	CFS							

Figure 5.9-1. DPGroup Worksheet Input Interface.

The calendar year, Model worksheet, and column of interest are entered by the user. The result data are plotted by calendar year and water year. The result data are also tabled by calendar year (Figure 5.9-2) and water year.

				Minin	num La Gra	ange Req F	Release - C	CFS				
CY 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	150	150	150	289	886	50	50	50	50	126	150	1
2	150	150	150	289	886	50	50	50	50	126	150	1
3	150	150	150	289	886	50	50	50	50	126	150	1
4	150	150	150	289	886	50	50	50	50	126	150	1
5	150	150	150	289	886	50	50	50	50	126	150	1
6	150	150	150	289	886	50	50	50	50	126	150	1
7	150	150	150	289	886	50	50	50	50	126	150	1
8	150	150	150	289	269	50	50	50	50	126	150	1
9	150	150	150	289	269	50	50	50	50	126	150	1
10	150	150	150	289	269	50	50	50	50	126	150	1
11	150	150	150	289	269	50	50	50	50	126	150	1
12	150	150	150	289	269	50	50	50	50	126	150	1
13	150	150	150	289	269	50	50	50	50	126	150	1
14	150	150	150	289	269	50	50	50	50	126	150	1
15	150	150	150	913	269	50	50	50	50	126	150	1
16	150	150	150	913	269	50	50	50	50	126	150	1
17	150	150	150	913	269	50	50	50	50	126	150	1
18	150	150	150	913	269	50	50	50	50	126	150	1
19	150	150	150	913	269	50	50	50	50	126	150	1
20	150	150	150	913	269	50	50	50	50	126	150	1
21	150	150	150	913	269	50	50	50	50	126	150	1
22	150	150	150	289	269	50	50	50	50	126	150	1
23	150	150	150	289	269	50	50	50	50	126	150	1
24	150	150	150	289	269	50	50	50	50	126	150	1
25	150	150	150	289	269	50	50	50	50	126	150	1
26	150	150	150	289	269	50	50	50	50	126	150	1
27	150	150	150	289	269	50	50	50	50	126	150	1
28	150	150	150	289	269	50	50	50	50	126	150	1
29	150		150	289	269	50	50	50	50	126	150	1
30	150		150	289	269	50	50	50	50	126	150	1
31	150		150		269		50	50		126		1
Ave	150	150	150	435	408	50	50	50	50	126	150	1
AF	9,223	8,331	9,223	25,871	25,109	2,975	3,074	3,074	2,975	7,736	8,926	9,2
nnual	115,742 AF		160 A	ve CFS								

Figure 5.9-2. ModelYearofDaily Output Table (calendar year).

5.10 ModelAnyGroup Worksheet

This worksheet (ModelAnyGroup) provides plotting of up to ten parameters provided in any Model component worksheet (e.g., worksheet DonPedro). One calendar year (the same year or different years) of data for a parameter can be plotted. The parameter(s) to be plotted are identified by reference worksheet name and column. A snapshot of the identification parameters and result values is shown in Figure 5.10-1. This worksheet performs the same function as the DSSAnyGroup worksheet except the source of its data are the Model component worksheets instead of DSS interface worksheets.

Values are plotted to either the primary y-axis or secondary y-axis. The "axis reference" indicates to which axis the value will be plotted by default. The designation of y-axis assignment is not modified by this field, and the user must edit the series data within the plot to change the y-axis assignment, graph type or line or shape characteristics. The "enter CY graph year" is a user entry. The same year or different year of a parameter or multiple parameters can be plotted. "Sheet name" is a user entry, and identifies from which Model component worksheet the parameter is to be acquired. The "enter column" entry identifies from which column the parameter occurs. Upon proper entry of a parameter a return of the parameter's label and source

worksheet will occur in the "data reference" field. Values for the specified calendar year will also be returned in the data field. If a plotting position is not used, a "#VALUE!" or "#REF!" will be returned. The "scaler" field is provided to allow the conversion or scaling of the data returned from the result worksheet. For instance, if the daily data occurs in the result worksheet in units of daily average flow (cfs) it could be plotted in units of daily volume (acre-feet) by entering the conversion factor of 1.983471. The entry in the field acts as a multiplier to the value occurring in the result worksheet. This field can also be used to scale two different "order of magnitude" parameters to use the same y-axis.

The results of up to ten parameters will be plotted. An example of the several plotted parameters from an active scenario is shown in Figure 5.10-2.

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	ModelAnyGroup													
2	This sheet illustrate	s a CY of da	ily results fr	om Model v	worksheets	in graphic f	ormat.							
3	Axis Reference	1		1		2		2		2		2		1
4	Enter CY Graph Year:	2004		2004		2004		2004		2004		2004		2004
5	Enter Sheet Name:	DonPedro		DonPedro		DonPedro		DonPedro		DonPedro		DonPedro		DonPedro
6	Column:	#N/A		72		6		7		#N/A		70		#N/A
7	Enter Column:			BT		F		G				BR		
								La Grange				La Grange		
				Don Pedro		Reservoir		Req				Release -		1
8	Data Reference:	#N/A	Date	Storage - AF (DonPedro)	Date	Inflow - AF (DonPedro)	Date	Release - CFS	Date	#N/A	Date	CFS (DonPedro)	Date	#N/A
° 9	Enter Scaler:	1	Date	1	Date	1	Date	1	Date	1	Date	1	Date	1
10	1-Jan-04	#N/A	1-Jan-04	1.622.829	1-Jan-04	8,300	1-Jan-04	175	1-Jan-04	#N/A	1-Jan-04	175	1-Jan-04	#N/A
11	2-Jan-04	#N/A	2-Jan-04	1,625,102	2-Jan-04	2,934	2-Jan-04	175		#N/A	2-Jan-04	175	2-Jan-04	#N/A
12	3-Jan-04	#N/A	3-Jan-04	1,625,102	3-Jan-04	2,934	3-Jan-04	175		#N/A	3-Jan-04	175	2-Jan-04 3-Jan-04	#N/A #N/A
12	4-Jan-04	#N/A #N/A	4-Jan-04	1,628,860	4-Jan-04	2,229	4-Jan-04	175		#N/A #N/A	4-Jan-04	175	4-Jan-04	#N/A #N/A
14	5-Jan-04	#N/A	5-Jan-04	1,629,314	5-Jan-04	1,115	5-Jan-04	175		#N/A	5-Jan-04	175	5-Jan-04	#N/A
15	6-Jan-04	#N/A	6-Jan-04	1,630,546	6-Jan-04	1,892	6-Jan-04	175		#N/A	6-Jan-04	175	6-Jan-04	#N/A
16	7-Jan-04	#N/A	7-Jan-04	1,631,507	7-Jan-04	1,621	7-Jan-04	175		#N/A	7-Jan-04	175	7-Jan-04	#N/A
17	8-Jan-04	#N/A	8-Jan-04	1,632,196	8-Jan-04	1,349	8-Jan-04	175		#N/A	8-Jan-04	175	8-Jan-04	#N/A
18	9-Jan-04	#N/A	9-Jan-04	1.632.895	9-Jan-04	1,359	9-Jan-04	175	9-Jan-04	#N/A	9-Jan-04	175	9-Jan-04	#N/A
19	10-Jan-04	, #N/A	10-Jan-04	1,634,514	10-Jan-04	2,279	10-Jan-04	175	10-Jan-04	#N/A	10-Jan-04	175	10-Jan-04	#N/A
20	11-Jan-04	#N/A	11-Jan-04	1,634,300		446	11-Jan-04	175	11-Jan-04	#N/A	11-Jan-04	175	11-Jan-04	#N/A
21	12-Jan-04	#N/A	12-Jan-04	1,636,320	12-Jan-04	2,680	12-Jan-04	175	12-Jan-04	#N/A	12-Jan-04	175	12-Jan-04	#N/A
22	13-Jan-04	#N/A	13-Jan-04	1,637,275	13-Jan-04	1,615	13-Jan-04	175	13-Jan-04	#N/A	13-Jan-04	175	13-Jan-04	#N/A
23	14-Jan-04	#N/A	14-Jan-04	1,638,581	14-Jan-04	1,967	14-Jan-04	175	14-Jan-04	#N/A	14-Jan-04	175	14-Jan-04	#N/A
24	15-Jan-04	#N/A	15-Jan-04	1,639,327	15-Jan-04	1,406	15-Jan-04	175	15-Jan-04	#N/A	15-Jan-04	175	15-Jan-04	#N/A
25	16-Jan-04	#N/A	16-Jan-04	1,640,134	16-Jan-04	1,466	16-Jan-04	175	16-Jan-04	#N/A	16-Jan-04	175	16-Jan-04	#N/A

Figure 5.10-1. ModelAnyGroup Worksheet Input Interface.

Unused plotting positions will appear with values plotted at "zero" and will have legends of "#VALUE!" or "#REF!". To create graphs without unused positions a copy of the plot can be made and positioned elsewhere in the worksheet. The unwanted positions can then be deleted from the plot.

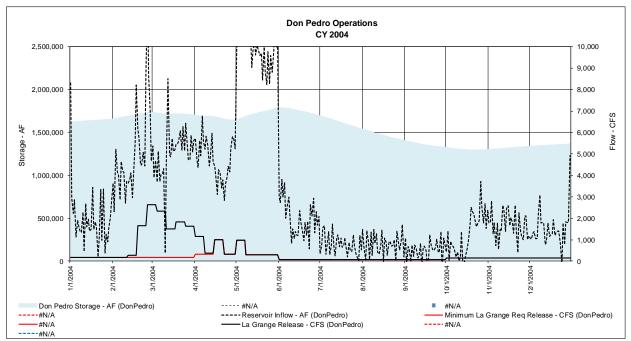


Figure 5.10-2. ModelAnyGroup Worksheet Plotting.

5.11 ModelMonthTable Worksheet

This worksheet (ModelMonthTable) provides summation or averaging, and plotting of up to four parameters provided in Model component worksheets (e.g., DonPedro worksheet). The function of this worksheet is to provide a synthesis of the daily result data into monthly results thus reducing the handling and display of over 14,000 values for each parameter (39 years of days) to 468 values (39 years of months). This worksheet and its functionality are identical to the DSSMonthTable worksheet except the source of its data are the Model component worksheets instead of DSS interface worksheets.

The parameter(s) to be plotted or tabled are identified by reference worksheet name and column, very similarly to the method identified for the ModelAnyGroup worksheet. A snapshot of the identification parameters and result values is shown in Figure 5.11-1.

Each parameter is tabled and plotted separately for the entire 39-year simulation period. "Sheet name" is a user entry, and identifies from which Model component worksheet the parameter is to be acquired. The "enter column letter" entry identifies from which column the parameter occurs. Upon proper entry of a parameter a return of the parameter's label, source worksheet and the native unit of the parameter will occur. Depending on need, the "conversion" entry is provided. This entry, a keyed value of 0 to 5, directs the worksheet on the handling of the daily data. An entry of 1 will direct the worksheet to sum the daily data into monthly increments in the parameter's native units (e.g., daily acre-feet into monthly volumes). An entry of 1 will convert the daily data from a native unit of flow (cfs) into monthly volumes of acre-feet. An entry of 2 will convert the daily data from a native unit of volume (acre-feet) into a monthly sum of daily flow in units of cfs. An entry of 3 will act as an entry of 1 except convert the result into monthly volumes with units of 1,000 acre-feet. An entry of 4 will table and plot the daily value associated

with the last day of each month in its native unit, and is primarily intended to analyze reservoir storage. An entry of 5 will report the average of daily values within a month. Depending on the entry in the conversion field, the converted unit will be returned to "converted unit" field. Values for the each month of the simulation period will also be returned in the data field. If a plotting position is not used, a "#VALUE!" or "#REF!" will be returned.

A "scaler" field is also provided for each parameter (in the row above the data fields) to allow the conversion or scaling of the data returned from the result worksheet.

5				Conversion	n Key:		
6				0	1≫1	Native	1
7				1	CFS >> AF	AF	1.9834700
8				2	AF >> CFS	CFS	0.5041669
9				3	CFS >> TAF	TAF	0.0019835
10				4	EOM Stor	AF	1
11				5	Ave Day	Native	1
12	Enter C	onversion (D-5):	4	1	1	1
13	Ent	ter Sheet Na	me:	DonPedro	DonPedro	DonPedro	DonPedro
14	Enter	r Column Let	tter:	BT	F	BR	G
15		Column	No:	72	6	70	7
16		La	bel:	ro Storage	oir Inflow (ge Release	ange Req F
17		Native L	Jnit:	AF	AF	CFS	CFS
18		Convert l	Jnit:	AF	AF	AF	AF
19	Index	Date	Day	1	1	1	1
20	1970.10	10/1/1970	Т	1,666,767	1,268	787	787
21	1970.10	10/2/1970	F	1,664,567	1,783	787	787
22	1970.10	10/3/1970	S	1,662,719	2,130	787	787
23	1970.10	10/4/1970	S	1,659,892	2,460	787	787
24	1970.10	10/5/1970	М	1,656,745	296	787	787
25	1970.10	10/6/1970	Т	1,654,119	1,870	787	787

Figure 5.11-1. ModelMonthTable Worksheet Input Interface.

The results of up to four parameters will be tabled and plotted. The content formats of reports are identified below. Refer to section 5.6 DSSMonthTable for illustrations of each format.

Standardized Tables

- Data synthesized into monthly volumes for the simulation period.
- Chronological annual values and associated monthly values are also grouped by water type, in descending order of annual runoff.

Standardized Graphs

- Graphs providing a trace of the monthly sequence of data developed for the standardized chronological table.
- Graphs depicting a particular column of data from the water year-based standardized table.
- Graphs for the same information displayed rank-ordered according to descending runoff.
- Standardized graphics are provided for a columnar comparison of the four parameters.

5.12 DonPedro Worksheet

This Model component worksheet (DonPedro) simulates the operation of Don Pedro Reservoir. Several sections of logic provide a systematic operation of the reservoir based on inflow and forecasted hydrology and water demands. As described earlier, the Model will direct releases from the Don Pedro Project under a "hold-unless-need-to-release" protocol, except as conditioned by minimum release requirements, diversions, preferred/maximum storage, and snowmelt management releases. The several sections of logic are illustrated and discussed below.

5.12.1 Don Pedro Reservoir Release Demands.

The Don Pedro Reservoir release requirements section of logic (Figure 5.12-1) assembles the underlying water demands placed for Don Pedro Reservoir releases. Reservoir inflow is derived from other Model component worksheets and is the sum of unregulated inflow to Don Pedro Reservoir (Hydrology worksheet) and regulated releases from the CCSF System (SFHetchHetchy worksheet, SFLLoyd worksheet and SFEleanor worksheet). The minimum flow requirement for the Tuolumne River is provided by worksheet LaGrangeSchedule as directed by worksheet UserInput. The "Existing Level Full Diversion Demand" is a projection of canal diversion requirements if no water supply shortages occurred and full demands are provided. "Scenario Canal Diversion Demand" is the canal diversions of MID and TID for the active scenario. These diversions are determined by either pre-processed computations of diversions (e.g., fixed Test Case diversions), user specified diversions, or dynamic computations. "Total DP Demands" are the summation of minimum release requirements for the river and canal diversions. Other information is developed in this section concerning the difference between scenario diversions and full diversion demand, and an overall summary of water disposition for the entire simulation period.

				1	_																		
	A	В	C D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	Х
1			1	Don Ped	ro Model																		
	Unit Title		2	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF					CFS	AF
3	Parameter	Title	3	DP Rese	rv DP Reserv	Minimum L	Minimum	MID Full E	MID Full D	TID Full Di	TID Full Di	MID Canal	MID Canal	TID Canal	TID Canal	Total Cana	Total Cana	ls				Total Rese	Total Rese
4																							
5	Acre-foot to	CFS conversi	on	This Scer	nario												Difference	from Base				_	
6	divide by :	1.983471		Check Su	ms	Sum AF	<u>39-ave</u>		<u>Other</u>	<u>39-ave</u>			<u>39-ave</u>	<u>39-ave</u>				39-yr Ave	39-yr Ave				
7					Inflow	65,915,187	1,690,133		MID Canal	284,177		Inflow	1,690,133	284,177	MID Cana	1	Inflow	0	0	MID Canal			
8					Evap	1,740,362	44,625		TID Canal	559,697		Evap	44,625	559,697	TID Canal		Evap	0	0	TID Canal			
9					River	31,532,459	808,525					River	808,525				River	0					
10					Canals	32,911,098	843,874	Minii	num River	213,897		Canals	843,874	213,897	Minimum	River	Canals	0	0	Minimum	River		
11					Net	-268,732																-	
12					Chng Stor	-268,732																	
13		39-year	Ave or Max	r 🗌								1,257	284,177	2,404	559,697		843,874		16,777		41,518		1,057,771
14			Min					Using WS	F = 1.000 All	Years		41		1									
15				Ir	flow	La Grange	Require	Existing	Level Full [Diversion D	emand		Sce	enario Car	nal Diversio	ins		Diversion	n Shortage	from Full I	Demand	Total DP	Demands
16									300,954		601,215											Total	Total
17	Month			Reservo	ir Reservoir	Minimum	Minimum	MID	MID	TID	TID	MID	MID	TID	TID	Total	Total	MID	MID	TID	TID	Res Rel	Res Rel
18	Index	Date	Day Days	Inflow	Inflow	Req	Req	Canal	Canal	Canal	Canal	Canal	Canal	Canal	Canal	Canals	Canals	Canal	Canal	Canal	Canal	Demands	Demands
19				CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF
20	1970.10	10/1/1970	T 3:	L 32	2 639	397	787	531	1,053	1,406	2,789	531	1,053	1,406	2,789	1,937	3,842	0	0	0	C	2,334	4,629
21	1970.10	10/2/1970	F 33	L 45	3 899	397	787	434	860	661	1,311	434	860	661	1,311	1,094	2,171	0	0	0	C	1,491	2,958
22	1970.10	10/3/1970	S 33	L 54	1 1,074	397	787	424	840	582	1,154	424	840	582	1,154	1,006	1,994	0	0	0	C	1,402	
23	1970.10	10/4/1970	IS 3:	L 62	5 1,240	397	787	463	918	1,119	2,220	463	918	1,119	2,220	1,582	3,139	0	0	0	C	1,979	3,926
24		10/5/1970		L 7	5 149	397	787	461	915	733	1,453	461	915	733		1,194	2,368	0	0	0	C		3,155
25	1970.10	10/6/1970	T 3:	L 47	5 943	397	787	491	973	841	1,668	491	973	841	1,668	1,332	2,641	0	0	0	C	1,728	3,428

Figure 5.12-1. Don Pedro Reservoir Release Demands.

5.12.2 Reservoir Evaporation / Initial Storage Computation and Encroachment Release

This section (Figure 5.12-2) performs an initial check of reservoir storage assuming the previously described minimum releases for the river and canals. A daily mass balance is

performed: *change in reservoir storage* = *inflow, minus outflow (releases), minus reservoir losses.* The prior day's reservoir evaporation is included in the calculation. If the computation produces resulting Don Pedro Reservoir storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for an encroachment, and if it exists a check release is computed. It is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 10 days. This protocol repeats itself every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred storage target and not require unrealistic hard releases of water to exactly conform to the target.

	А	В	С	D	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH A
1			1											
2	Unit Title		2					AF						
3	Parameter	Title	3		rvoir f	Release De	mands	COE Rainf	Final Targe	et Storage -	- AF			
4														
5	Acre-foot to	CFS conversio	n											
6	divide by :	1.983471												
7														
8														
9														
10														
11														
12					ļ									
13		39-year A	ve o											
14				Min										
15						Evap/loss			Storage Co	mputation	and Encro	achment R		
16							Initial	COE				Spread	Spread	
17	Month					Net Res	DP	Rainflood	Target	Initial		Encroach	7th Day	
18	Index	Date	Day	Days		Evap/Loss	Storage	Target	Stroage	Encroach	7th Day	10 days	10 days	7-day
19						AF	1,670,900	AF	AF	AF	AF	AF	CFS	Count
20	1970.10	10/1/1970	т	31		143	1,666,767	1,760,900	1,690,000	0	0	0	0	1
21	1970.10	10/2/1970		31		141	1,664,567	1,749,200	1,690,000	0	0	0	0	0
22	1970.10	10/3/1970	S	31		141	1,662,719	1,737,500	1,690,000	0	0	0	0	0
23	1970.10	10/4/1970	S	31		141	1,659,892	1,725,800	1,690,000	0	0	0	0	0
24	1970.10	10/5/1970	М	31		141	1,656,745	1,714,100	1,690,000	0	0	0	0	0
25	1970.10	10/6/1970	Т	31		141	1,654,119	1,702,400	1,690,000	0	0	0	0	0

Figure 5.12-2. Reservoir Evaporation/Initial Storage Computation and Encroachment Release.

5.12.3 Snow-melt Management

A second check release is made during the April through June period for management of anticipated snowmelt runoff (Figure 5.12-3). On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir from the date of forecast through the end of June (the assumed target date of reservoir filling). These forecasts determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June. For April and May, the DWR 90 percent exceedence forecast is used for anticipated runoff, along with known minimum releases and losses, and upstream impairment. The user defines the percentage of volume (of the total volume) to be additionally released during each month. For April, 30 percent of the 3month volume is advised for release, and during May 50 percent of the 2-month volume is advised for released. For June, the historically reported UF flow is assumed for the runoff computation. This assumes pre-knowledge of the runoff volume for the month, and 100 percent of the excess is spread across the month. The snowmelt check release is evenly distributed across the days of the month. The release made in a day is the greater of the two check releases or the minimum release. At no time is the maximum capacity of the reservoir (2,030,000 acre-feet) allowed to be exceeded, and if necessary a release, regardless of magnitude, will be made by the model to not exceed maximum storage capacity.

_						_					-			-												
	Α	В	CC	A	J AK	AL	AM	AN	AO	AP	AQ /	AR AS	AT	AU	AV	AW	AX	AY A	Z BA	BB	BC	BD	BE	BF	BG B	BH BI
1			1																							
	Unit Title		2																							CFS
3	Parameter	Title	3																							Target SM I
4																										
5.	Acre-foot to	CFS conver	rsion																							
6	divide by :	1.9834)	71		Lookup of	Est of	Uses	Compute	Compute	Compute	Amount	Lookup of	Est of	Uses	Compute	Compute	Compute	Amount	Lookup of	Est of	Uses	Compute	Compute	Compute	Amount	
7					1-Apr	Apr-Jun	Current Yr	Upstream	Availble	Total	to be	1-May	May-Jun	Current Yr	Upstream	Availble	Total	to be	Actual	June	Current Yr	Upstream	Availble	Total	to be	
8					90% Exc	Portion	Canal +	Adjust	DP Stor	Excess	Released	90% Exc	Portion	Canal+	Adjust	DP Stor	Excess	Released	June	Portion	Canal +	Adjust	DP Stor	Excess	Released	
9					Apr-Jul	of	Min River	to	through	Apr-Jun	during	Apr-Jul	of	Min River	to	through	May-Jun	during	Runoff	of	Min River	to	through	Jun	during	
10					Runoff	Apr-Jul	+Typ Evap	UF	June	Release	April	Runoff	Apr-Jul	+Typ Evap	UF	June	Release	May		June	+Typ Evap	UF	June	Release	June	
11																										
12					23	% Apr/Ap	r AJ																			
13		39-yea	r Ave or Mi	ax	35	% May/A	pr AJ				(C 1.10)	49	% May/N	lay MJ				(C 1.20)							(C 1.30)	
14			M	lin	29	% Jun/Ap	r AJ	% of Apr	lun excess i	el in April	30	38	% Jun/Ma	iy MJ	% of May	-Jun excess	s rel in May	50				% of .	lune excess	rel in June	100	
15							April Snov	/-melt Rel	ease Routi	ne				May Snow	v-melt Rel	ease Routi	ne				June	Snow-me	It Release I	Routine		
16								April							May							June				Target
17	Month				1-Apr	1-Apr	A-Jun	A-Jun	A-Jun	A-Jun	April	1-May	1-May	M-Jun	M-Jun	M-Jun	M-Jun	May	1-Jun	1-Jun	June	June	June	June	June	SM
18	Index	Date	Day Da	ys	A-Jul Fost	A-Jun Fost	t Can+Riv+E	USAdj	DP Avail	Excess	SM Rel	A-Jul Fcst	MJune Fcs	tCan+Riv+E	USAdj	DP Avail	Excess	SM Rel	June UF	June Fost	Can+Riv+E	USAdj	DP Avail	Excess	SM Rel	Release
19					AF	AF	AF	AF	AF	AF	CFS	AF	AF	AF	AF	AF	AF	CFS	AF	AF	AF	AF	AF	AF	CFS	CFS
20	1970.10	10/1/19	70 T	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
21	1970.10	10/2/19	70 F	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	C	0	0	0	0	0	0
22	1970.10	10/3/19	70 S	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
23	1970.10	10/4/19	70 S	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0
24	1970.10	10/5/19	70 M	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	C	0	0	0	0	0	0
25	1970.10	10/6/19	70 T	31	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5.12-3. Snow-melt Management.

5.12.4 Modesto Flow Objective, Don Pedro Reservoir, and Tuolumne River Release

A Modesto flood control objective is incorporated into release logic (Figure 5.12-4). The objective is to maintain a flow at Modesto no greater than a user-specified flow rate. The logic checks against an allowable river release that would not exceed the flood control objective after considering the lower Tuolumne River accretions and Dry Creek flow. The previous check releases are compared to the allowable release. The release is then reduced if necessary to not exceed the Modesto flow target objective, even if it results in an encroachment in Don Pedro Reservoir. The exception is when the reservoir reaches full (2,030,000 AF). Any computed encroachment above a full reservoir is passed and the Modesto flow objective is exceeded.

	А	В	С	D	BJ	BK	BL	BM	BN	BO	BP BQ	BR	BS	BT	BU	BV	BW	BX	BY B
1	A	U	1	-	00	UK	DL	DIVI	DIN	80	DF DQ	DIX	05	01	00		DVV	DA	01 1
2	Unit Title		2		CFS	S	CFS	CFS	CFS	CFS	AF	CFS		AF		Acres			AF
3	Parameter	Title	3		Re Dry	/ Creek	LTR Accr	Tot Unreg	Trg Max LO	Modesto F	lov La Grange	La Grange	Release	Don Pedro	o Storage	DP Surface	e Area		DP Total Ev
4																			
5	Acre-foot to	CFS conversio	n																
6	divide by :	1.983471																	
7																			
8																			
9																			
10																			
11																			
12		39-vear A		Max					(C 1.00)		808,525			500 400	Min 1976-	77			44,626
13 14		33-yeur A	veur	Min		Enter	Modesto I	C Taraet	9,000	CES	808,323				Min 1970-				44,020
14 15 16								<u> </u>	low Obiect		Final La Gr	ange River		700,000		22 Pedro Rese	rvoir		
16					R	eport	Est	Total	Target	Calc	Final	Final	DP		Encroach	Net [Oon Pedro I	Loss Calcul	ation
17	Month				Dry	, Creek	LTR Acc	Unreg	Max	Modesto	La Grange	La Grange	Storage	DP	above	Area	Factor	CFS	AF
18	Index	Date	Day	Days	F	Flow	Flow	Blw LG	LaGrange	Flow	Release	Release	Change	Storage	2,030,000				
19						CFS	CFS	CFS	CFS	CFS	AF	CFS	AF	1,670,900		11,156			
20	1970.10	10/1/1970		31		30	99	129			787			1,666,767				71.2	
21	1970.10	10/2/1970		31		30	99	129	8,871	526	787			1,664,567		11,127		71.2	
22	1970.10	10/3/1970		31		30	99	129	8,871	526	787			1,662,719				71.1	
23	1970.10	10/4/1970		31		30	100	130			787			1,659,892		/		71.0	
24	1970.10	10/5/1970		31		30	100	130	-/		787		-3,147	1,656,745	0	11,082	0.006395	70.9	
25	1970.10	10/6/1970		31		30	100	130	8.870	527	787	397		1,654,119	0		0.006395	70.8	140.4

Figure 5.12-4. Modesto Flow Objective, Don Pedro Reservoir, and Tuolumne River Release.

The several advised releases, storage conditions and water demands all culminate in determining the "Final La Grange River" release. The "Don Pedro Reservoir" section of logic reports the final reservoir storage of a day and the computation of Don Pedro Reservoir losses. Reservoir losses are computed in accordance with procedures of the Fourth Agreement.

5.12.5 Don Pedro Project Generation and River Flows

Based on the hydrologic operation of Don Pedro Reservoir in the Model, power characteristics of the scenario are computed. Equations of Don Pedro powerhouse generation characteristics define capacity (MW) and efficiency (kWh/AF), based on reservoir storage. Capacity potential uses minimum storage of the day, while efficiency uses average storage of the day. The maximum water through plant is assumed to be 5,400 cfs. Water that does not appear as passing through the generators is computed to be "spilled-bypassed". The power generation is "cutoff" at reservoir storage of 308,960 acre-feet, the top of the dead pool.

Flow in the river below La Grange diversion dam is computed and reported. The flow is a determined value by the Model. The same hydrologic information used within the Modesto flow objective logic is added to La Grange releases to estimate flow at downstream points in the river. Currently an estimate of total Tuolumne River accretion between La Grange Bridge and the confluence of Dry Creek is added to La Grange releases to provide an estimate of flow above the Dry Creek confluence. The estimated flow of Dry Creek is added to that estimate to provide an estimate of flow below the Dry Creek confluence at "Modesto". Additional flow points can be added as information becomes available. Figure 5.12-5 is a snapshot of these sections of logic.

	А	В	С	D	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI	CJ	СК	CL	CM	CN	CO	CP
1			1																		
2	Unit Title		2					MW	kWh/AF	AF	AF	AF	MWh		CFS				CFS	CFS	
3	Parameter	Title	3		vap	oration		DP PH Cap	DP PH Eff	Total DP Re	DP Power I	DP Spill / I	Don Pedro	o Er	La Grange	Release			TR abv Mo	TR blw Dry	/ Creek
4																					
5	Acre-foot to	CFS conversio	n																		
6	divide by :	1.983471																			
7																					
8																					
9																					
10																					
11											(C 1.22)										
12					Į		39-yr Ave	191		1,652,399	1 C C	163,829	607,705								
13		<u>39-year A</u>	ve or				Max	198	440	154,471	10,711	143,760	4,710								
14				Min	! .		Min	127	258	410	410	0	106								
15									Pedro Pov	ver Operat								River Flow	-		
16						Per Ave	Per Min	(C 1.20)		Total	Thru		Don						LTR abv	LTR blw	
17	Month	_ .	_	_		DPStor	DPStor	308,960		DP	PH (cfs)	Spill/	Pedro							Modesto	Mouth
18	Index	Date	Day	Days	5			Capability		Release	5,400	Bypass	Energy		RM 51.8	RM 42.0	RM 31.0			RM	RM 0.0
19		40/4/4070	-			AF	AF	MW	kWh/AF	AF	AF	AF	MWh		CFS	CFS	CFS	CFS	CFS	CFS	CFS
20		10/1/1970		31	1 E	1,668,834		195	408	4,629	4,629	0			397				496		
21	1970.10 1970.10	10/2/1970 10/3/1970		31 31	1 E	1,665,667		195 195	408 407	2,958	2,958 2,781	0		1 I	397 397				496 496		
22		10/3/19/0		31	1 H	1,663,643 1,661,305			407	2,781 3,926	2,781	0		- I	397				496		
23		10/4/19/0			1 B				407	3,926	3,926	0		1 1	397				496		
24 25		10/5/19/0		31 31	1 E	1,658,319 1,655,432			407	3,155	3,155	0		1 1	397				497		
25	1970.10	10/0/19/0	1	31		1,000,432	1,054,119	195	407	3,428	3,428	U	1,394		397				497	527	

Figure 5.12-5. Don Pedro Project Generation and River Flows.

5.12.6 Don Pedro Inflow Components

This section of logic (Figure 5.12-6) assembles the Don Pedro Reservoir inflow components from other Model component worksheets.

	А	В	С	D	СТ	CU	CV	CW	CX	CY	CZ	DA	DB	DC	DD
1			1												
2	Unit Title		2		4	٨F	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS
3	Parameter	Title	3		0	P Inflow	DP Inflow	DP Inflow	DP Inflow	DP Inflow	DP Inflow	Unreg Infl	Unreg Infl	DP Inflow	DP Inflow
4															
5	Acre-foot to	CFS conversio	n												
6	divide by :	1.983471				Read		Read		Read			Read		Read by
7						from		from		from			from		Model
8					SFH	etchHetcl	iy	SFLloyd		SFEleanor			Hydrology		
9						Incl									
10					F	Return of									
11					N	loc Hatch									
12															
13		39-year A	ve or	<u>Max</u>	3	9-year av	erage								
14				<u>Min</u>		525,724		378,296		102,781		683,332		1,690,133	
15										w to Don F	Pedro Rese	rvoir			
16						Inflow	Inflow	Inflow	Inflow	Inflow	Inflow				
17	Month					from	from	from	from	from	from	Unreg	Unreg	DP	DP
18	Index	Date	Day	Days		HH	HH	Lloyd	Lloyd	Eleanor	Eleanor	Inflow	Inflow	Inflow	Inflow
19						AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS
20	1970.10	10/1/1970	т	31		179	90	443	223	20	10	-2	-1	639	322
21	1970.10	10/2/1970	F	31		179	90	443	223	20	10	258	130	899	453
22	1970.10	10/3/1970	S	31		179	90	443	223	20	10	433	218	1,074	541
23	1970.10	10/4/1970	S	31		179	90	443	223	20	10	599	302	1,240	625
24	1970.10	10/5/1970	М	31		179	90	443	223	20	10	-492	-248	149	75
25	1970.10	10/6/1970	т	31		179	90	443	223	20	10	302	152	943	475

Figure 5.12-6. Don Pedro Reservoir Inflow Components.

5.13 SFHetchHetchy Worksheet

This Model component worksheet (SFHetchHetchy) simulates the operation of Hetch Hetchy Reservoir. Several sections of logic provide a systematic operation of the reservoir based on inflow and forecasted hydrology and water demands. As described earlier, the Model will direct releases from Hetch Hetchy Reservoir under a "hold-unless-need-to-release" protocol, except as conditioned by minimum release requirements, diversions, preferred/maximum storage, and snowmelt management releases. The several sections of logic are illustrated and discussed below.

5.13.1 Hetch Hetchy Release Demands / Reservoir Evaporation / Initial Storage Computation and Encroachment Release

This section (Figure 5.13-1) of logic assembles the underlying water demands placed for Hetch Hetchy Reservoir releases. Reservoir inflow is derived from worksheet Hydrology and is the unimpaired flow entering the reservoir. The initial releases are comprised of the minimum flow requirement below Hetch Hetchy Reservoir (from the worksheet CCSF) and represent requirements prior to consideration of Canyon Tunnel flows, Mountain Tunnel flows that consist of diversions for the SJPL (from the worksheet CCSF), Moccasin Fish Hatchery releases and diversions by Groveland CSD from Mountain Tunnel.

This section also performs an initial check of reservoir storage assuming the previously described minimum releases for the river and Mountain Tunnel. A daily mass balance is performed: *change in reservoir storage = inflow, minus outflow (releases), minus reservoir*

losses. The prior day's reservoir evaporation is included in the calculation. If the computation produces resulting Hetch Hetchy Reservoir storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for an encroachment, and if it exists a check release is computed. For the preferred reservoir storage target encroachment it is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 7 days. This protocol repeats itself every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred storage target and not require unrealistic hard releases of water to exactly conform to the target.

5.13.2 Supplemental Releases and Final Reservoir and Release Computation

This section (Figure 5.13-2) of logic performs the final computation of reservoir storage and releases. Incorporated into the logic is inclusion of user specified supplemental releases (from WaterBankRel or SFWaterBank worksheets) and snowmelt management releases (described later). Reservoir losses are computed in accordance with procedures of the Fourth Agreement.

	А	В	C D		E	F	G	Н	1	1	К	L	м	N	0	р	0	R	S	Т	U	V
1			1		Hetch Hetch	hy Reserv	oir Model															
2	Unit Title		2		CFS	AF		CFS	AF	CFS	AF	CFS	AF	AF								
3	Parameter	Title	3	н	Hetch Het H	letch Het		SJPL + Mor	SJPL + Mo	SJPL	SJPL	HH Req St	HH Req St	HH Net Ev	ар							
4																						
5,	Acre-foot to	CFS conversi	on	T	This scenari	io							<u>Base</u>				Difference	e from Base	<u>e</u>		_	
6	divide by :	1.983471		C	Check Sums	<u>s</u>	Sum AF	<u>39-ave</u>		Other Sum	s	Sum AF		<u>39-ave</u>		Sum AF		<u>39-ave</u>		Sum AF		
7					1	nflow	29,761,289	763,110			Supplmtl	0	Inflow	763,110	Supplmtl	0	Inflow	0	Supplmtl	0)	
8					E	vap	149,655	3,837					Evap	3,837			Evap	0				
9						SJPL+	9,922,420	254,421					SJPL+	254,421			SJPL+	0				
10					/	Von-SJPL	19,655,587	503,989					Non-SJPL	503,989			Non-SJPL	0				
11						Vet	33,627															
12				L	0	Chng Stor	33,627															
13		<u>a</u>	9-year Av	e		763,110			254,421		231,238			3,837								
14				H				32	Moc Hatcl	+ Grovela												
15					Inflo					Initial R	eleases			Evap/loss			Storage Co	mputation	n and Encro			
16					HH	нн		SJPL	SJPL			w/o 64	w/o 64		Initial	Target	Hard			Spread		
17	Month				Reservoir F			+ Moc Hat				Req	Req	Net Res	нн	нн	Limit	Initial		Encroach		
18	Index	Date	Day Day	/S		Inflow		Grove	Grove	SJPL	SJPL	Blw HH		Evap/Loss		Storage	Storage	Encroach		over 7		
19					CFS	AF		CFS	AF	CFS	AF	CFS	AF	AF	250,000	360,360		AF	AF	AF	CFS	Count
20		10/1/1970		31	79	157		341	677	309	614	60	119		249,349	359,381						_
21		10/2/1970		31	-82	-163		341	677 677	309	614	60	119		248,379	358,401						
22		10/3/1970		31	25 110	50 218		341 341	677	309 309	614 614	60 60	119 119	11	247,622	357,422 356,443		0				
23 24		10/4/19/0		81 81	-38	-75		341	677	309	614	60			247,032 246,150	355,463		-			0 0	
24		10/5/19/0		51 51	-58	-75		341	677	309	614	60			246,150 245,360						0 0	
25	1570.10	10/0/19/0	1 3	1	9	18		341	677	309	014	00	119	11	243,300	554,484	500,300	0	l l		J U	0

Figure 5.13-1. Reservoir Evaporation/Initial Storage Computation and Encroachment Release.

	А	В	С	D	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
1			1												
2	Unit Title		2			AF	CFS	AF	AF						CFS
3	Parameter	Title	3			HH Supple	HH Releas	HH Releas	HH Storag						Total HH R
4															
5	Acre-foot to (CFS conversio	n												
6	divide by :	1.983471													
7															
8															
9															
10															
11															
12															
13		3	Э-уес	ar Ave				503,989							
14									C 10						
15									Final Re	lease and				1.11	
16							HH	HH		нн			oir Loss Cal		НН
17	Month		_	_	Supplmtl		Release	Release	нн	Storage	Area	Factor	CFS	AF	Total
18	Index	Date	Day	Days		Release	abv Mnt	abv Mnt	Storage	Change					Release
19					CFS	AF	CFS	AF	250,000	AF					CFS
20	1970.10	10/1/1970		31	0	0	60	119	249,349	-651		0.003253	5.6	11.1	401
21		10/2/1970		31	0	0	60	119	248,379	-970	-	0.003253	5.6	11.1	401
22	1970.10	10/3/1970		31	0	0	60	119	247,622	-758		0.003253	5.6	11.1	401
23		10/4/1970		31	0	0	60	119	247,032			0.003253	5.6	11.1	401
24	1970.10	10/5/1970		31	0	0	60	119	246,150	-883	1,714	0.003253	5.6	11.1	401
25	1970.10	10/6/1970	Т	31	0	0	60	119	245,360	-789	1,711	0.003253	5.6	11.0	401

Figure 5.13-2. Supplemental Release, Reservoir Storage and Release.

5.13.3 Snow-melt Management

A second check release is made during the February through June period for management of anticipated snowmelt runoff. On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir, from the date of forecast through the end of June (assumed target of reservoir filling). These forecasts (Figure 5.13-3) determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June.

Pre-knowledge is used for anticipated runoff, minimum releases and losses. The user defines the percentage of volume (of the total volume for the period) to be additionally released during each month. For February through April, 10 percent of the additional release volume is advised for release, and may be additionally capped. This approach tends to hold Hetch Hetchy Reservoir releases for later release during May. The snowmelt check release is evenly distributed across the days of the month and can be capped in terms of rate (cfs) or minimum volume of the reservoir to which it can be drawn during the month. The particular release made in a day is the greater of the two check releases or the minimum release. At no time is the maximum capacity of the reservoir allowed to be exceeded, and if necessary a release, regardless of magnitude, will be made by the model to not exceed maximum storage capacity.

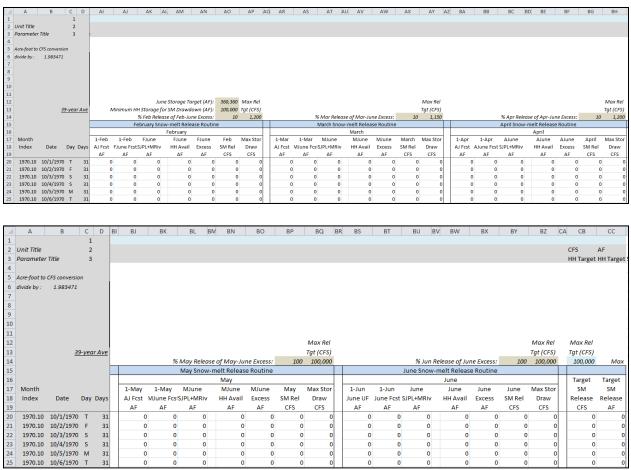


Figure 5.13-3. Snow-melt Management.

5.14 SFLloyd Worksheet

This Model component worksheet (SFLloyd) simulates the operation of Lake Lloyd. Several sections of logic provide a systematic operation of the reservoir based on inflow and forecasted hydrology and water demands. The Model will direct releases from Lake Lloyd under a "hold-unless-need-to-release" protocol, except as conditioned by minimum release requirements, diversions, preferred/maximum storage, snowmelt management releases and target releases for Holm Powerhouse. The several sections of logic are illustrated and discussed below.

5.14.1 Lake Lloyd Release Demands, Initial Storage Computation and Encroachment Release

This section of logic (Figure 5.14-1) assembles the underlying water demands placed for Lake Lloyd releases. Reservoir inflow is derived from the Hydrology worksheet and is the unimpaired flow entering the reservoir. The initial releases are comprised of the minimum flow requirement below Lake Lloyd (from worksheet CCSF) and target releases for Holm Powerhouse (from worksheet CCSF).

	Α	В	С	D	F	F	G	Н	1	1	K	1	М	N	0	Р	Q	R	S	Т	U
1			1	_	Lake Lloyd	Model											_				
2	Unit Title		2		CFS	AF	CFS	AF		AF	CFS	AF		AF		AF	AF				
3	Parameter	Title	3		Lake Lloyc	Lake Lloyc	Min Holm Ta	Min Holm		Suppleme	Lloyd Req	Lloyd Req		Lloyd Net	Evap	Lloyd Targe	Lloyd Limi	i			
4																					
5	Acre-foot to	CFS conversion	on		This scena	rio							Base				Difference	from Base	2		
6	divide by :	1.983471		ſ	Check Surr	15	Sum AF	<u>39-ave</u>		Other Sun	ns	Sum AF		<u>39-ave</u>		Sum AF		<u>39-ave</u>		Sum AF	
7						Inflow	11,743,646	301,119			Supplmtl	171,708	Inflow	301,119	Supplmtl	171,708	Inflow	0	Supplmtl	0	
8						Tun Inflow	3,196,266	81,956					Tun Inflov	81,956			Tun Inflow	0			
9						Evap	136,660	3,504					Evap	3,504			Evap	0			
10						Stream	1,298,823	33,303					Stream	33,303			Stream	0			
11						Holm	13,454,734	344,993					Holm	344,993			Holm	0			
12						Net	49,694														
13						Chng Stor	49,694														
14		3	9-yea	r Ave		301,119		38,628		4,403		5,538	_	3,504							
15					Infl	ow	Initial Re	elease		Suppl	Initial I	Release		Evap/loss		1	Initial Stor	age and En	icroachmei	nt Release	
16					Lake	Lake	Min	Min		171,708	Stream	Stream			Initial	Lloyd				Spread	Spread
17	Month				Lloyd	Lloyd	Holm	Holm		Supplmtl	Req	Req		Net Res	Lloyd	Target	Limit	Initial	Encroach	Encroach	7th Day
18	Index	Date	Day	Days	Inflow	Inflow	Target	Target		Release	Blw Lloyd	Blw Lloyd		Evap/Loss	Storage	Storage	Storage	Encroach	7th Day	over 7	Enc over 7
19					CFS	AF	CFS	AF		AF	CFS	AF		AF	200,000	200,000	AF	AF	AF	AF	CFS
20		10/1/1970		31	56	111	0	0		0	5	10		10	200,091	248,000	273,300	0	0	0	0
21		10/2/1970		31	5	10	0	0		0	5			10	200,080		273,300	0			
22		10/3/1970		31	15	30	0	0		0	5			10	200,090	248,000	273,300	0	0	0	. 0
23		10/4/1970		31	-399	-791	0	0		0	5			10	199,278		273,300	0	-	-	
24		10/5/1970		31	322	638	0	0		0	5			10	199,896		273,300	0			
25	1970.10	10/6/1970	т	31	-48	-94	0	0		0	5	10		10	199,781	248,000	273,300	0	0	0	0

Figure 5.14-1. Reservoir Evaporation/Initial Storage Computation and Encroachment Release.

This section also performs an initial check of reservoir storage assuming the previously described minimum releases for the river and Holm Powerhouse. A daily mass balance is performed: *change in reservoir storage = inflow, minus outflow (releases), minus reservoir losses.* The prior day's reservoir evaporation is included in the calculation. If the computation produces resulting Lake Lloyd storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for an encroachment, and if it exists a check release is computed. It is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 7 days. This protocol repeats itself every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred storage target and not require unrealistic hard releases of water to exactly conform to the target. User specified supplemental releases are reported in this section but are not incorporated into the worksheet's logic until later.

5.14.2 Supplemental Releases, Lake Eleanor Transfers and Final Reservoir and Release Computation

This section of logic (Figure 5.14-2) performs the final computation of reservoir storage and releases, including consideration of snowmelt management releases (described later) and transfers from Lake Eleanor.

Both the initial check release for preferred storage encroachment and the snowmelt check release are computed and advised for reservoir operations. If supplemental releases above minimum releases are computed the Model routes the additional release through Holm Powerhouse up to its available capacity. The remainder of the supplemental release is routed to the stream below Lake Lloyd. A comparison is made between "Lloyd-only" use of Holm Powerhouse capacity and maximum capacity for passage to the Lake Eleanor model component.

The operation goal linkage between Lake Lloyd and Lake Eleanor assumes that Lake Eleanor will transfer water from its watershed to Lake Lloyd for the purpose of enhancing power generation at Holm Powerhouse. Thus, any available capacity at Holm Powerhouse <u>after</u> the

Lloyd-only operation is assumed available and desired for use of a Lake Eleanor transfer. If water is transferred from Lake Eleanor the Model assumes the water to be directly routed to Holm Powerhouse which then becomes additional release from Lake Lloyd.

Also incorporated into the logic is inclusion of user specified supplemental releases (from the WaterBankRel or SFWaterBank worksheets). Supplemental releases are added to any other release established for Lake Lloyd. Reservoir losses are compute in accordance with procedures of the Fourth Agreement.

_																									
. A	A	В	C D	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
1			1																						
2	Unit Title		2							CFS		CFS	AF	CFS	AF	CFS	AF	CFS		AF					
3	Parameter	Title	3							Lloyd-only	Holm	Final Strea	Final Strea	Tunnel Inf	Tunnel Inf	Final Holn	Final Holn	Total Lloy	Total Lloy	Lake Lloyc					
4																									
5	Acre-foot to (CFS conversio	n																						
6	divide by :	1.983471																							
7																									
8																									
9																									
10																									
11																									
12				Holm	(C 2.41)																				
13				950	CFS Max																				
14		39	-year Ave																						
15							Prior to	Eleanor							Final R	outing						Final S	torage		
16				Holm	Holm	Llyd-only	Llyd-only	Revised	Revised	Holm	Holm	Stream	Stream			Final	Final	Lloyd	Lloyd	Lake	Lloyd	Lai	e Lloyd Los	s Calculatio	n
17	Month			Capacity	Capacity	Rel w/o	Rel w/o	Routed	Routed	Prior to	Prior to	w/ Suppl	w/ Suppl	Eleanor	Eleanor	Holm	Holm	Total	Total	Lloyd	Storage	Area	Factor	CFS	AF
18	Index	Date	Day Days	for Elnr	for Elnr	Suppl Rel	Suppl Rel	Holm	Holm	Tun Infl	Tun Infl	Release	Release	to Holm	to Holm	Total	Total	Release	Release	Storage	Change				
19				CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	200,000	AF				
20	1970.10	10/1/1970	T 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	200,091	91	1,607	0.003253	5.2	10.4
21	1970.10	10/2/1970	F 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	200,080	-11	1,607	0.003253	5.2	10.4
22	1970.10	10/3/1970	S 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	200,090	10	1,607	0.003253	5.2	10.4
23	1970.10	10/4/1970	S 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	199,278	-811	1,607	0.003253	5.2	10.4
24	1970.10	10/5/1970	M 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	199,896	617	1,605	0.003253	5.2	10.4
25	1970.10	10/6/1970	T 31	950	1,884	5	10	0	0	0	0	5	10	218	433	218	433	223	443	199,781	-115	1,607	0.003253	5.2	10.4

Figure 5.14-2. Supplemental Releases, Lake Eleanor Transfers and Final Reservoir Operation.

5.14.3 Snow-melt Management

A second check release is made during the February through June period for management of anticipated snowmelt runoff. On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir, from the date of forecast through the end of June (assumed target of reservoir filling). These forecasts (Figure 5.14-3) determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June. Pre-knowledge is used for anticipated runoff, minimum releases and losses. The user defines the percentage of volume (of the total volume for the period) to be additionally released during each month. For February through May, a varying percentage of the additional release volume is advised for release, and is capped in rate as a means to confine releases within the capacity of Holm Powerhouse. The snowmelt check release is evenly distributed across the days of the month. The release can also be capped in terms of minimum volume of the reservoir to which it can be drawn during the month.

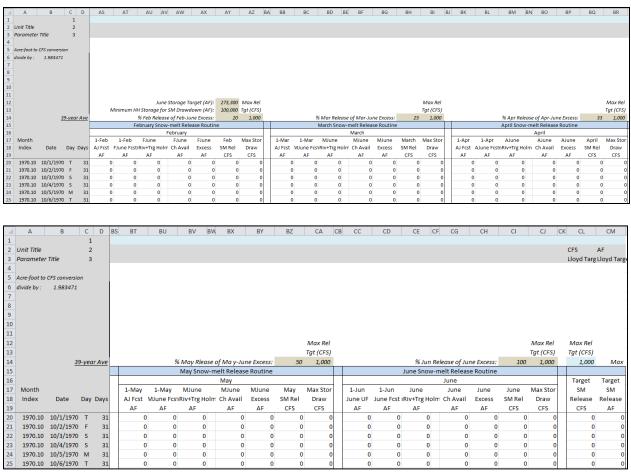


Figure 5.14-3. Snow-melt Management.

5.15 SFEleanor Worksheet

This Model component worksheet (SFEleanor) simulates the operation of Lake Eleanor. Several sections of logic provide a systematic operation of the reservoir based on inflow and forecasted hydrology and water demands. The Model will direct releases from Lake Eleanor under a "hold-unless-need-to-release" protocol, except as conditioned by minimum release requirements, diversions, preferred/maximum storage, snowmelt management releases. When advised releases exceed the minimum Model logic attempts to transfer water to Lake Lloyd. The several sections of logic are illustrated and discussed below.

5.15.1 Lake Eleanor Release Demands, Initial Storage Computation and Encroachment Release

This section of logic (Figure 5.15-1) assembles the underlying water demands placed for Lake Eleanor releases. Reservoir inflow is derived from the Hydrology worksheet and is the unimpaired flow entering the reservoir. The initial releases are comprised of the minimum flow requirement below Lake Eleanor (from the CCSF worksheet). An initial check of reservoir storage occurs assuming the minimum releases for the river. A daily mass balance is performed: *change in reservoir storage = inflow, minus outflow (releases), minus reservoir losses.* The prior

day's reservoir evaporation is included in the calculation. If the computation produces resulting Lake Eleanor storage in excess (encroachment) of the preferred storage target, the encroachment is computed. Every 7th day the model checks for an encroachment, and if it exists a check release is computed. For the preferred reservoir storage target encroachment it is assumed that a constant supplemental release (in excess of minimum releases) will be initiated at a rate equal to the encroachment divided equally over the next 7 days. This protocol repeats itself every 7th day, reestablishing the level of check release each time. The end result of this procedure will allow encroachment of storage space above the preferred storage target and not require unrealistic hard releases of water to exactly conform to the target.

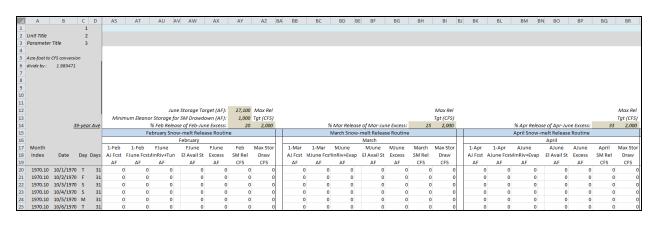
	٨	В	С	n	F		G	Н	 	V		м	N	0	p	0	R	S	т	U	M
1	A	D	1	_	Lake Elean	r Model		п	 1	N	L	IVI	IN	0	P	ų	n	3		0	v
2	Unit Title		2		CFS	AF				CFS	AF				AF	AF					
	Parameter	Title	3		Lake Elear		nor Inflow			Eleanor R		og Stroom	Pol				imit Storag	•			
1	Furumeter	nue	5		Lake Lieai	Lake Liea	nor mnow			Lieanoria	Lieanor In	eq stream	inei		Lieanor n	Lieanor Li	inint Storag	c			
5	Acre-foot to	CFS conversi	ion		This scena	rio						Base				Difference	e from Base	,			
	divide by :			- P	Check Sum		Sum AF	39-ave	Other Su	ns	39-yr Ave		39-ave		39-yr Ave		39-ave		39-vr Ave		
7						Inflow	7,276,607	186,580	0 11 1 0 1	Tunnel	81,956	Inflow	186,580	Tunnel		Inflow		Tunnel	00 11110		
8						Evap	72,708	1,864			01,500	Evap	1.864		01,500	Evap	0				
9						Tun Out	3,196,266	81,956				Tun Out	81,956			Tun Out	0				
10						Stream	4,008,460	102,781				Stream	102,781			Stream	0				
11						Net	-826	101,701				otream	202,702			otream				1	
12						Chng Stor															
13				ŀ		ening stor	020					1									
14		3	39-vear A	ve		186,580					9,087		1,864								
15		-			Infl					Initial I	Release	1	Evap/loss			Initial Stor	rage and Ei	ncroachme	nt Release	2	
16					Lake	Lake				Stream	Stream	1		Initial	Eleanor	Hard	ľ		Spread	Spread	
17	Month				Eleanor	Eleanor				Reg	Req		Net Res	Eleanor	Target	Limit	Initial	Encroach	Encroach	7th Day	
18	Index	Date	Day D	ays	Inflow	Inflow				BI Eleanor	BI Eleanor	-	Evap/Loss	Storage	Storage	Storage	Encroach	7th Day	over 7	Enc over 7	7-day
19					CFS	AF				CFS	AF		AF	18,000	AF	AF	AF	AF	AF	CFS	Count
20	1970.10	10/1/1970	т	31	25	50				10	20		6	18,030	15,000	27,100	3,030	3,030	433	3 218	1
21	1970.10	10/2/1970	D F	31	2	4				10	20		6	17,576	15,000	27,100	2,576	3,030	433	3 218	0
22	1970.10	10/3/1970) S	31	7	14				10	20		6	17,131	15,000	27,100	2,131	3,030	433	3 218	0
23	1970.10	10/4/1970) S	31	-179	-355				10	20		6	16,317	15,000	27,100	1,317	3,030	433	3 218	0
24		10/5/1970		31	144	287				10	20	1	6	16,145				3,030	433		0
25		10/6/1970		31	-21	-42				10		1	6	15,644					433	3 218	0

Figure 5.15-1. Reservoir Evaporation/Initial Storage Computation and Encroachment Release.

5.15.2 Lake Eleanor Transfers and Final Reservoir and Release Computation

This section of logic (Figure 5.15-2) performs the final computation of reservoir storage and releases, including consideration of snowmelt management releases (described later) and transfers from Lake Eleanor to Lake Lloyd.

Both the initial check release for preferred storage encroachment and the snowmelt check release are computed and advised for reservoir operations. If excess releases above minimum releases are computed the Model routes the additional release through the tunnel up to the limit of its available capacity or the capacity available at Holm Powerhouse. The remainder of the supplemental release is routed to the stream below Lake Eleanor. The Lake Eleanor operation protocol will transfer water that would otherwise be released in excess of minimum flow requirements (largely dependent upon the preferred target storage and snowmelt releases) but it will not allow water to be "pulled" from Lake Eleanor to Lake Lloyd.


The operation goal linkage between Lake Lloyd and Lake Eleanor assumes that Lake Eleanor will transfer water from its watershed to Lake Lloyd for the purpose of enhancing power generation at Holm Powerhouse. Thus, any available capacity at Holm Powerhouse <u>after</u> the Lloyd-only operation is assumed available and desired for use of a Lake Eleanor transfer. If water is transferred from Lake Eleanor the model assumes the water to be directly routed to Holm Powerhouse which then becomes additional release from Lake Lloyd. Reservoir losses are computed in accordance with procedures of the Fourth Agreement.

- 4	٨	В	C D	W	V	v	7	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	A I/	AL	AM	AN	AO	AP	AQ	AR
	A	D	1	vv	~	1	2	АА	AD	AC	AD	AE	Аг	AG	Ап	AI	AJ	AK	AL	Alvi	AN	AU	AP	AQ	An
1	Unit Title		1					CES	AF	CFS	AF					CES	AF	CFS	AF	AF					
	Parameter	The	2									ream Relea								Lake Elean					
3	Parameter	inte	3					Tunnel	runner	Eleanor St	Eleanor St	ream kelea	se			Tun Trans	Tun Trans	Total Elea	Total Elea	Lake Elean	for Storage	2			
4																									
		CFS conversio	n I																						
6	divide by :	1.983471																							
/																									
8																									
10																									
												Г		Capacity	(0.0.04)										
11 12													Tunnel		(C 2.81) CFS Max										
												L		400	CFS WIDX										
13 14			9-vear Ave						81.956		102.781								184.737						
14		33	-yeur Ave						01,330	Dee		Final Routir							104,/3/			Cincil 9	torage		
16				Revised	Revised	Excess	Excess	Put	Put	Rei	riseu anu r	Avail	0	Limit by	Limit hu			Total	Total	Revised	Eleanor		e Eleanor Lo:	es Calaulati	
10	Month				Stream		aby Min			Final	Final	Holm Cap			Tunnel	Transfer	Transfer		Eleanor		Storage	Area	Factor	ss calculati	on
17	Index	Date	Day Days		Release	Stream	Stream	to Tunnel	to Tunnel	Stream	Stream	for El		Available			Capacity	Release	Release		Change	Area	Factor		
19	muex	Date	Day Days	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	AF	CFS	Available	CFS	AF	CFS	AF	18.000	AF	Acres		CFS	AF
20	1070.10	10/1/1970	T 31		453	218	433	218	433	10	20	950	1,884	400	793		793		453	17,591	-409		0.003253	2.9	5.8
20		10/1/1970			453	218	433	218	433	10	20	950	1,884	400	793		793		453	17,331	-409		0.003253	2.9	5.8
21		10/2/1970		228	453	218	433	218	433	10	20	950	1,884	400	793		793		453	16,692	-434		0.003253	2.9	5.7
22		10/3/1970		228	453	218	433	218	433	10	20	950	1,884	400	793		793		453	15,878	-445		0.003253	2.9	5.7
23		10/4/19/0 10/5/1970		228	453	218	433	218	433	10	20	950	1,884	400	793		793		453	15,878	-814		0.003253	2.9	5.7
24		10/5/1970			453	218	433		433	10	20	950	1,884	400	793		793		453	15,206	-172		0.003253	2.8	5.6
25	1970.10	10/0/19/0	1 31	228	453	218	433	218	433	10	20	950	1,884	400	793	400	/93	228	453	15,206	-501	874	0.003253	2.8	5.0

Figure 5.15-2. Lake Eleanor Transfers and Final Reservoir Operation.

5.15.3 Snow-melt Management

A second check release is made during the February through June period for management of anticipated snowmelt runoff. On the first day of each of these months a forecast is made of anticipated runoff into the reservoir and minimum releases and losses from the reservoir, from the date of forecast through the end of June (assumed target of reservoir filling). These forecasts (Figure 5.15-3) determine the volume of water (if any) that will require release in excess of minimum releases and losses and storage gain by the end of June. Pre-knowledge is used for anticipated runoff, minimum releases and losses. The user defines the percentage of volume (of the total volume for the period) to be additionally released during each month. For February through May, a varying percentage of the additional release volume is advised for release. The snowmelt check release is evenly distributed across the days of the month. The release can also be capped in terms of minimum volume of the reservoir to which it can be drawn during the month.

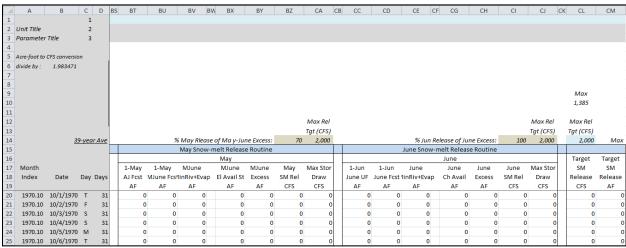


Figure 5.15-3. Snow-melt Management.

5.16 SFWaterBank Worksheet

This worksheet (SFWaterBank) provides for entry of daily supplemental releases from the CCSF System. The worksheet is comparable to worksheet WaterBankRel except that this worksheet provides alternative methods of identifying supplemental releases (UI 3.10 = 0). Employing this option, the user can identify year type table-based supplemental flow, without or without addition of the pre-processed Test Case supplemental release.

Without any other manual intervention the Model will direct releases from the CCSF System under a "hold-unless-need-to-release" protocol. Additional releases greater than provided by the default protocol may be needed. An example of such a need is during periods when CCSF System operations would otherwise deplete the Water Bank Account to a point of a "negative" balance.

The manual adjustment to releases from the CCSF System is provided to allow the user to "pull" additional water from the CCSF System as supplemental inflow to Don Pedro Reservoir. An entry of supplemental release is established that will first pull water from Lake Lloyd so that water supply is preserved in the Hetch Hetchy Reservoir system for diversion to the SJPL. At a point when such supplemental releases strain Lake Lloyd storage, the supplemental releases are

directed to Hetch Hetchy Reservoir. The supplemental release is directed from a reservoir at a point in logic after the default protocol releases occur. Thus, the release occurs in addition to what operation is already occurring by default. Such a release can affect the following day's default operation or previous periods' operations, thus results require review to determine if the user's desired result occurs.

5.16.1 CCSF Water Bank Account Balance Accounting, CCSF La Grange Flow Responsibility and Test Case Supplemental Releases

Figure 5.16-1 is a snapshot of the worksheet. The worksheet provides the daily accounting of the Water Bank Account Balance for the Model. Information ported from other worksheets of the Model into this worksheet is Don Pedro Reservoir inflow (Column E) and the unimpaired flow at La Grange (Column F). These data and the protocols associated with Fourth Agreement Water Bank Account Balance accounting (Columns G through Column O) derive the daily credit or debit of CCSF and then the daily balance of the Water Bank Account (Column M).

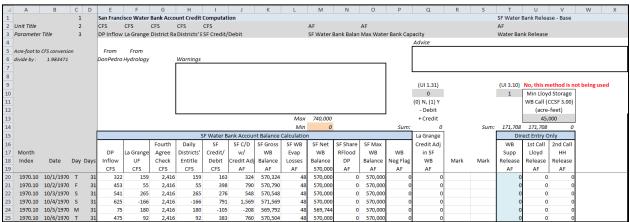


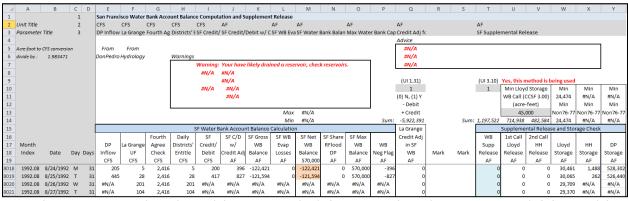
Figure 5.16-1. CCSF Water Bank Balance Accounting.

For purposes of the FERC investigation, the protocols of Fourth Agreement Water Bank Accounting have been amended to incorporate a hypothetical implementation of "shared responsibility" for incremental increases in FERC-required flows for the Tuolumne River.³ If running the scenario with shared responsibility has been selected (worksheet UserInput Switch UI 1.31 = 1), the incremental increase in FERC-required flows is determined by the daily difference between the current 1995 FERC Settlement requirements and scenario-required minimum flows. This computation occurs in worksheet LaGrangeSchedule with information regarding the scenario-required flows directed through worksheet UserInput. Approximately fifty-two percent (51.7121%) of the incremental difference between the flow schedules is assigned as CCSF's responsibility and shows in Column Q as a "debit". This debit then enters Fourth Agreement Water Bank Accounting at Column J, and subsequently contributes to the determination of the daily Water Bank Account Balance (Column M).

³ The "shared responsibility" assumption is presented for the purpose of evaluating alternative operations. The assumption shall not be used as evidence in any proceeding relating to and shall not act as precedence for any allocation of Tuolumne River water between CCSF and the Districts for any purpose under the Fourth Agreement.

Water Bank Account Balances which are less than zero ("negative") are highlighted, and the minimum balance, whether negative or positive, is reported in Cell M14. By default, the base supplemental releases to maintain a positive Water Bank Account Balance at or above zero have been entered into Column T (WB Supplemental Release). An alternative time series can be used. The Model will first direct the supplemental release to Lake Lloyd, and continue releases until storage at Lake Lloyd is drawn to a specified 45,000 acre-feet minimum level (shown in Cell Q10 and entered at worksheet CCSF Switch 3.00). Subsequent supplemental releases will be drawn from Hetch Hetchy Reservoir any time storage is less than the Lake Lloyd minimum.

5.16.2 User Specified Table of Supplemental Releases and Reservoir Status Computation


Figure 5.16-2 illustrates the section of logic that incorporates a user Specified table of supplemental releases (UI 3.40) into the Model. A daily time series (Column Y) of supplemental releases is developed from the user specified table in worksheet UserInput. By selection, the user identifies whether or not the year type table-based supplemental release is added the preprocessed Test Case supplemental releases (Column T previously described). The Model then uses the selected supplemental release in its computation of operations.

	Α	В	С	D	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI
1			1			User-defir	ned SF Ups	tream Sup	plemental	Release					
2	Unit Title		2							AF					
3	Parameter	Title	3							Total SF Su	uppl Relea	se			
4															
5	Acre-foot to (CFS conversio	n												
6	divide by :	1.983471								(UI 3.10)	1	No, this m	nethod is n	ot being u	sed
7					2,704,000	2,875,708	2,875,708	0							
8						Add Base							-		
9						Supp				Fin	al Supplim	ental Rele	ease from O	Other Met	hod
10						1	N/A			0	(UI 3.20)				
11						(0) no	(UI 3.30)			(0) Base			Min	Min	Min
12						(1) yes				(1) User-d	efined		103,852	84,135	508,489
13					Su	pplementa	al Table Ent	try					Min	Min	Min
14						Supp							Non 76-77	Non 76-77	Non 76-77
15					Supp	Table	1st Call	2nd Call					103,852	114,720	785,605
16					Table	Only, or	То	То	Sum:	171,708	171,708	0			
17	Month				Release	Table +	Lloyd	нн			Lloyd	нн	Lloyd	HH	DP
18	Index	Date	Day	Days	Only	Existing	Release	Release		Total	Release	Release	Storage	Storage	Storage
19					AF	AF	AF	AF		AF	AF	AF	AF	AF	AF
20	1970.10	10/1/1970	т	31	0	0	0	0		0	0	0	200,091	249,349	1,666,767
21	1970.10	10/2/1970	F	31	0	0	0	0		0	0	0	200,080	248,379	1,664,567
22	1970.10	10/3/1970	S	31	0	0	0	0		0	0	0	200,090	247,622	1,662,719
23		10/4/1970		31	0	0	0	0		0	0	0	199,278	247,032	1,659,892
24	1970.10	10/5/1970	М	31	0	0	0	0		0	0	0	199,896	246,150	1,656,745
25	1970.10	10/6/1970	Т	31	0	0	0	0		0	0	0	199,781	245,360	1,654,119

Figure 5.16-2. CCSF Supplemental Release.

The result of entering the supplemental release will cause a recalculation of the entire Model with results refreshed in the worksheet. Lake Lloyd, Hetch Hetchy Reservoir and Don Pedro Reservoir storage is ported from other worksheets to provide the status of their storage as supplemental releases are entered.

Warnings and advice are provided in the worksheet when several conditions occur. The snapshots below illustrate the occurrence of these conditions. In this first example (Figure 5.16-3) a warning has been provided that a reservoir has likely been depleted by the current operation assumptions. In this particular example, Tuolumne River minimum flows were increased with responsibility shared with CCSF, and a set of supplemental releases were established. In this iteration of results it is discovered in Column X (Hetch Hetchy Reservoir storage) an error (reported as "#N/A") on August 26, 1992 has occurred in the Model.

Note: This screen save is from the worksheet WaterBankRel description. Identical warnings are included in worksheet SFWaterBank.

Figure 5.16-3. Example 1: A Reservoir Empties and the Model Crashes.

By review of the previous day's storage results for Lake Lloyd (Column W), Hetch Hetchy Reservoir (Column X) and Don Pedro Reservoir (Column Y), and the rate of depletion for each of these reservoirs, it is concluded that Hetch Hetchy Reservoir likely drained on August 26 and thus crashed the Model. Although noted, a negative Water Bank Account Balance (Column M) will not cause the Model to crash. To remedy the condition, the user uses worksheet UserInput to revise (lower) SJPL diversions from Hetch Hetchy Reservoir (UI 4.10 and UI 4.20) and retain water in Hetch Hetchy Reservoir for release. If Don Pedro Reservoir storage was the culprit of causing the Model to crash, the user uses worksheet UserInput to revise (lower) MID and TID canal diversions (UI 2.10, UI 2.20 and UI 2.30 to retain water in Don Pedro Reservoir for release. Alternatively, the user could reduce the scenario's designated minimum flow requirement, which would change flow needed from the upstream systems.

In a second example (Figure 5.16-4), a warning has been provided that the Water Bank Account Balance is negative for one or more days of the scenario. In this instance, all Model reservoirs are operating within a viable operation (the Model did not crash due an emptying reservoir); however, the objective to maintain a positive Water Bank Account Balance has been violated. Upon inspection of the results the user can find the first instance of violation and remedy the violation by entry into Column T an amount of release that maintains at least a zero balance in the Water Bank Account Balance, and/or modify the year type table-based supplemental flows in worksheet UserInput. For the first day of violation the reported negative balance (e.g., -3,253 acre-feet) is needed as a supplemental release. The ensuing days of supplemental release are informed by Column P.

1	٨	R	C D	E	F	6	н	1	1	K	1	М	N	0	P	0	P	s	т		V	W	Y	v
1	-	0	1	San Franc	isco Water	Bank Acco	unt Balano	e Comput	ation and S	upplemen	t Release			Ū		ų	n	5		U			~	
2	Unit Title		2	CFS	CES			CES	ΔF		AF	AF		AF		AF			AF					
	Parameter	Title	2						Crodit/	Dobit w/ C			Pank Palar		r Bank Car	Credit Adj fo				emental Re	loaco			
3	Fulumeter	nae	5	DFIIIIOW	La Grange	FOULTINAS	Districts t	or creatly	or creaty	Debit w/ C	SF WEEVO	of water	Dalik Dalai		i bank cap	Advice			3F Supple	mentarite	lease			
4					-																			
		CFS conversion	n	From	From											lf Water Bai								1
6	divide by :	1.983471		DonPedro	Hydrology		Warnings									Column M)	enter volum	ie of supp	lemental i	release inte	o Column 1	to		1
7																maintin bal	ance at zero	or great	er. Use Col	umn M an	d Column I	P for guida	nce.	1
8								Warning:	SF Water	Bank is 'ne	gative'. A	dd supplen	nental rele	ase										
9									(Column 1	T) to maint	ain balana	e at least i	zero.			(UI 1.31)			(UI 3.10)	Yes, this r	nethod is l	being used		
10																0			1	Min Lloy	d Storage	Min	Min	Min
11																(0) N, (1) Y				WB Call (CCSF 3.00)	131.254	84.135	508,489
12																- Debit					-feet)	Min	Min	Min
13											Max	740.000			1	+ Credit					.000			Non76-77
14											Min				Sum:			Sum:		40,		131.254		
															Sum:		1	sum:						
15									ank Accou	r		-				La Grange						se and Sto	rage Check	
16						Fourth	Daily	SF	SF C/D	SF Gross	SF WB	SF Net	SF Share			Credit Adj			WB	1st Call	2nd Call			i
17	Month			DP	La Grange	Agree	Districts'	Credit/	w/	WB	Evap	WB	RFlood	WB	WB	in SF			Supp	Lloyd	HH	Lloyd	HH	DP
18	Index	Date	Day Day	s Inflow	UF	Check	Entitle	Debit	Credit Adj	Balance	Losses	Balance	DP	Balance	Neg Flag	WB	Mark	Mark	Release	Release	Release	Storage	Storage	Storage
19				CFS	CFS	CFS	CFS	CFS	AF	AF	AF	570,000	AF	AF	AF	AF			AF	AF	AF	AF	AF	AF
7887	1992.04	4/15/1992	W 3	2138	4,322	4,066	4,066	-1,928	-3,824	4,011	. 0	4,011	0	570,000	0	0			0	0	0	256,353	262,227	969,641
7888	1992.04	4/16/1992	т з	1628	3,150	4,066	3.150	-1,521	-3,017	994	0	994	0	570,000	0	0			0	0	0	257.148	263,740	969,822
7889		4/17/1992				4,066	4.066	-2.141			-	-3,253		570,000								259.037	265,786	
7890		4/18/1992				4,000	4,066	-2,086		-7,390		-7,390		570,000	4,137							260,795	270,314	
1030	1002.04	-1 10/ 1992	5 5	1980	3,307	4,000	4,000	2,000	4,137	7,550	0	7,550		570,000	4,137	0				1 ⁰		200,795	2,0,314	,0,000

Note: This screen save is from the worksheet WaterBankRel description. Identical warnings are included in worksheet SFWaterBank.

Figure 5.16-4. Example 2: Water Bank is Negative.

It is possible that within the remedy of Example 2 the error exemplified by Example 1 may occur as Hetch Hetchy Reservoir may be drained through the efforts of maintaining a positive Water Bank Account Balance. At that point, the procedures of Example 1 will be required and the values already derived for supplemental releases may need to be revisited and possibly changed.

5.17 LaGrangeSchedule Worksheet

This worksheet (LaGrangeSchedule) assembles the designation of the minimum flow requirement for the Tuolumne River. By user specification (UI 1.10) either the current 1995 FERC schedule is selected (UI 1.10 = 0) or the user defined minimum flow requirement is selected (UI 1.10 = 1). If the current 1995 FERC schedule is selected the computation of the schedule is computed in this worksheet (later described).

5.17.1 Minimum Flow Requirement Options

When using current 1995 FERC minimum flow requirements, the user can direct (worksheet Control, switch C 1.60) which shape of releases to assume for pulse flows during April and May. This section of the worksheet (Figure 5.17-1) performs the parsing the monthly flow requirements into daily flow requirements. If using the user specified flow schedule (identified and processed in worksheet UserInput), this section prepares the use of that data for use by the Model. Upon selection of the flow requirement, Column F is used to provide the minimum flow requirement to the rest of the Model. Although not directly linked through user switches, this section of the worksheet illustrates an example of developing an alternative flow requirement for testing. Columns M through Column Q perform a synthesis of an alternative flow requirement as has been suggested by the SWRCB. This particular flow requirement currently serves as the example alternative requirement for this documentation. The specifics of this component of flow requirement (February through June) in combination with the current 1995 FERC minimum flow requirement has been provided to worksheet UserInput for illustration purposes.

1	Α	В	C D	E	F	G	Н		1	К	L	М	N	0	Р	0	R	S	Т	U	V
1			1	La Grange	Minimum	Flow Calo	ulation														
2	Unit Title		2	CFS	AF					AF						AF		CFS	AF	CFS	AF
3	Parameter	Title	3	La Grange	La Grange					1995 FERC						Alt Test Fl	i	User-Defi	User-Defi	User-Defi	iı User-Defi
4																					
5	Acre-foot to	CFS conversion	n															Sample A	<u>lt</u>		
6	divide by :	1.983471			Read by		Existing F	ERC Requir	ements								1	Greater o	FFERC or 3	0% UF Feb	-Jun
7					Model		See Cell /	AN1 for beg	inning of o	alculation		Alternativ	e flow req	uirement (O	Column T o	r V)		Daily time	series, or a	average of	^c daily
8					as AF			Required	Daily			Option wi	ithin an op	tion:	0			by year ty	pe averag	е	
9					213,897			Monthly	Parsing	213,897					Time Serie	s			507,554		507,395
10				Input Opti				Volume	Monthly				()))	i Userinput				Time	Series		ble
11					0										Jun, with B			1	1	0	0
12				0 - Current				<u>April - Ma</u>	· · · · ·						f SWRCB Co	omponent		UserInput			t UserInput
13				1 - Alterna	tive (Colur	nn Tor V)		Option >>				Alternativ	/e - SWRCE					User	User	User	User
14								(1) Even d	aily distrib	ution				200	3500			Defined	Defined	Defined	Defined
15				Model	Model			(2) 2-Pulse	?				X%	Min Cap	Max Cap			Time	Time	Yr-Type	Yr-Type
16				Input	Input					FERC Only			30	200	3500			Series	Series	Table	Table
17	CYMonth			La Grange	•		Pulse	La Grange		La Grange			Trial			X% Req		Flow	Flow	Flow	Flow
18	Index	Date	Day Days		Daily		Day	Monthly	Percent	Daily		TR UF	Feb-Jun	Feb-Jun	Feb-Jun	Alone			Reqrmnt		
19				CFS	AF			AF		AF		CFS	CFS	CFS	CFS	AF		CFS	AF	CFS	AF
20		10/1/1970			787			24,397	0.03226	787		159		-	0	0		397			
21		10/2/1970			787			24,397	0.03226	787		55			-	0		397	787		
22		10/3/1970			787			24,397	0.03226	787		265	-	-	-	0		397	787		
23		10/4/1970			787			24,397	0.03226	787		-166		-	-	0		397	787		
24		10/5/1970			787			24,397	0.03226	787		180	-	-	-	0		397	787		
25	1970.10	10/6/1970	T 31	. 397	787			24,397	0.03226	787		92	0	0	0	0		397	787	295	585

Figure 5.17-1. Daily Parsing of Minimum FERC Flow Requirement.

5.17.2 April – May Daily Parsing of Flow Requirements

This section of the worksheet (Figure 5.17-2) provides information to parse monthly-designated minimum flow requirements into daily patterns during April and May. Worksheet Control designates which parsing pattern is to be used.

	Α	В	С	D	W	X	Y	Z	AA	AB	AC	AD		AE		AF		AG		AH		AI		AJ
1			1																					
2	Unit Title		2		Custom	ized Dail	y Pulse	Flow Pa	tterns fo	or the Ap	ril - May	Perio	bd											
3	Parameter	Title	3																					
4																								
5	Acre-foot to	CFS conversio	m										٨	oril I	Mouri	o Cr		Dog	dron	nont	_			
6	divide by :	1.983471			April - Ma	iy Parsing							A	pril - I	viay i	a Gra	ange	Requ	uiren	nenc	5			
7					Daily Patt	ern of April	-May Fishe	ery Releas	e Volumes	;	0.080 ع								Τ				Т	
8							Even	2-Pulse			0.070	+				_			+		-		+	
9						Option >>	1	2			2 0.060	-			+	_	+	++-	-	_			+	
10					1		0.033	0.022			↓ 0.060 to 0.050 ₩ 0.040	-					-			_		_	+	
11					2		0.033	0.022			Ĕ 0.040												1	
12					3		0.033	0.022				_					-						4	<u> </u>
13					4		0.033	0.022			0.030 0.020												T	<u> </u>
14					5		0.033	0.022			U 0.020			_									Ť	
15					6		0.033	0.022			0.010 Daily Per	-			_		-		-		-	-	+	
16					7		0.033	0.022			0.000	+			_	_	-	-	-	-	-	-	+	
	CYMonth		-		8		0.033	0.022				1-Apr	6-Apr 11-Apr	16-Apr	21-Apr	26-Apr	1-May	6-May	11-May	16-May	21-May	26-May	31-May	
18 19	Index	Date	Day	Days	9		0.033	0.022				÷	9 1	16	21	26		6	11-	16-	21-	26-	31-	
20	1970.10	10/1/1970	т	31	11		0.033	0.022																
20	1970.10	10/1/1970		31	11		0.033	0.022																
22	1970.10	10/3/1970		31	12		0.033	0.022																
23	1970.10	10/4/1970		31	14		0.033	0.022																
24	1970.10	10/5/1970		31	15		0.033	0.070																
25	1970.10	10/6/1970		31	16		0.033	0.070																

Figure 5.17-2. April-May Daily Parsing of Minimum FERC Flow Requirement.

5.17.3 Computation of 1995 FERC Minimum Flow Requirement

This section of the worksheet (Figure 5.17-3) computes the current 1995 FERC flow requirement. Several elements of information provided in this worksheet and from worksheet Control provide the computation of flow requirement based on 1995 FERC Settlement procedures and flow rates. The basis of the year type flow requirements is the SWRCB San Joaquin River Basin 60-20-20 index. The annual flow schedules are assumed to be apply on a

April through March year, with the interpolation water of the schedules applied to April and May pulse flows.

A B C D AN	AN I	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ
1 1 Cu	rent FERC R	equiremer	nts																				
2 Unit Title 2	Tuolumne	e River Flov	v Interpolat	ion - Year	2011 Revis	sed Distribu	tion									FERC Flow Sche	dules						
3 Parameter Title 3																							
4	Flow Year	Type	5	JR Basin II	ndex			Flow Requ	irement					1									
5 Acre-foot to CFS conversion					_								Base			Year Type	1	2	3	4	5	6	7
6 divide by : 1.983471	1		<	1510								94000	82,910			Oct 1-15 (CFS)	100	100	150	150	180	200	300
7	2			1510	- <	2000		0.0286	x (Index -	1510	+	103000	82,910			Oct 16-31 (CFS)	150	150	150	150	180	175	300
8	3			2000	- <	2190			x (Index -	2000		117016	84,398			Total Base (AF)	7,736	7,736	9,223	9,223	11.068	11,504	18,447
9	4			2190	- <				x (Index -	2190		127507	90,448			Attraction (AF)	0	0	0	0	1.676	1.736	5,950
10	5			2440	- <	2720		0.0804	x (Index -	2440	+	142502	106,583			Total Oct (AF)	7,736	7,736	9,223	9,223	12,744	13,240	24,397
11	6			2720	- <	3180		0.2955	x (Index -	2720	+	165002	104,977			Nov (CFS)	150	150	150	150	180	175	300
12	7			3180	and Great	ter						300923	211,044			AF	8,926	8,926	8,926	8,926	10,711	10,413	17,852
13									Option >>	1	2	3	4	5	1	Dec (CFS)	150	150	150	150	180	175	300
14	1	< <option< td=""><td></td><td></td><td>Ave</td><td>219,421</td><td>149,274</td><td>70,146</td><td></td><td>Actual</td><td>90% Exc.</td><td>75% Exc.</td><td>Med.</td><td>10% Exc.</td><td>1</td><td>AF</td><td>9,223</td><td>9,223</td><td>9,223</td><td>9,223</td><td>11.068</td><td>10,760</td><td>18,447</td></option<>			Ave	219,421	149,274	70,146		Actual	90% Exc.	75% Exc.	Med.	10% Exc.	1	AF	9,223	9,223	9,223	9,223	11.068	10,760	18,447
15	SJR				1	TuolumneT	uolumne	Pulse	Base	SJR	Apr SJR	Apr SJR	Apr SJR	Apr SJR		Jan (CFS)	150	150	150	150	180	175	300
16	Index	Year		Water		River	River	Flow	Year	Index	Index	Index	Index	Index	1	AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447
17 CYMonth	602020	Class		Year		Require	Base	Calc	Туре	602020	Fcast	Fcast	Fcast	Fcast	1	Feb (CFS)	150	150	150	150	180	175	300
18 Index Date Day Days	4,543,729	Wet		1922		300,923	211,044	89,879	7	4,543,729	2,424,373	2,561,322	2,674,495	2,921,846		AF	8,331	8,331	8,331	8,331	9,997	9,719	16,661
19	3,549,358	Above		1923		300,923	211,044	89,879	7	3,549,358	1,765,568	1,897,976	2,007,411	2,246,643	1	Mar (CFS)	150	150	150	150	180	175	300
20 1970.10 10/1/1970 T 31	1,419,746	Critical		1924		94,000	82,910	11,090	1	1,419,746	799,642	853,197	957,737	1,186,335		AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447
21 1970.10 10/2/1970 F 31	2,929,617	Below		1925		226,944	104,977	121,967	6	2,929,617	2,042,878	2,179,628	2,292,637	2,539,632		Apr (CFS)	150	150	150	150	180	175	300
22 1970.10 10/3/1970 S 31	2,300,567	Dry		1926		134,141	90,448	43,693	4	2,300,567	1,256,470	1,387,014	1,494,917	1,730,818		:AF	8,926	8,926	8,926	8,926	10,711	10,413	17,852
23 1970.10 10/4/1970 S 31	3,558,955	Above		1927		300,923	211,044	89,879	7	3,558,955	2,147,110	2,284,156	2,397,408	2,644,932		May (CFS)	150	150	150	150	180	175	300
24 1970.10 10/5/1970 M 31	2,632,407	Below		1928		157,972	106,583	51,388	5	2,632,407	1,934,163	2,068,826	2,180,117	2,423,380		AF	9,223	9,223	9,223	9,223	11,068	10,760	18,447
25 1970.10 10/6/1970 T 31	2,004,815	Critical		1929		117,282	84,398	32,884	3	2,004,815	1,140,712	1,270,277	1,377,372	1,611,521		Migration Flow							
26 1970.10 10/7/1970 W 31	2,016,115	Critical		1930		117,906	84,398	33,508	3	2,016,115	1,270,167	1,401,445	1,509,950	1,747,161		AF	11,091	20,091	32,619	37,060	35,920	60,027	89,882
27 1970.10 10/8/1970 T 31	1,200,755	Critical		1931		94,000	82,910	11,090		1,200,755	917,245	1,046,199	1,152,794	1,385,852		Jun (CFS)	50	50	50	75	75	75	250
28 1970.10 10/9/1970 F 31	3,410,299	Above		1932		300,923	211,044	89,879	7	3,410,299		2,815,654				AF	2,975	2,975	2,975	4,463	4,463	4,463	14,876
29 1970.10 10/10/1970 S 31	2,440,676			1933		142,556	106,583	35,973		2,440,676		1,901,889				Jul (CFS)	50	50	50	75	75	75	250
30 1970.10 10/11/1970 S 31	1,440,719			1934		94,000	82,910	11,090		1,440,719		1,541,549				AF	3,074	3,074	3,074	4,612	4,612	4,612	15,372
31 1970.10 10/12/1970 M 31	3,557,242			1935		300,923	211,044	89,879		3,557,242		2,384,346				Aug (CFS)	50	50	50	75	75	75	250
32 1970.10 10/13/1970 T 31	3,740,020			1936		300,923	211,044	89,879		3,740,020		3,216,284				AF	3,074	3,074	3,074	4,612	4,612	4,612	15,372
33 1970.10 10/14/1970 W 31	3,897,744			1937		300,923	211,044	89,879		3,897,744		3,608,402				Sep (CFS)	50	50	50	75	75	75	250
34 1970.10 10/15/1970 T 31	5,894,485			1938		300,923	211,044	89,879		5,894,485		4,594,804				AF	2,975	2,975	2,975	4,463	4,463	4,463	14,876
35 1970.10 10/16/1970 F 31	2,198,794	Dry		1939		128,035	90,448	37,587	4	2,198,794	1,767,445	1,899,140	2,007,989	2,245,946		Total Annual	94,001	103,001	117,017	127,508	142,503	165,004	300,926

Figure 5.17-3. 1995 FERC Minimum Flow Requirement.

5.17.4 CCSF La Grange Release Responsibility

Also performed in this worksheet is the computation of the hypothetical responsibility of CCSF for Tuolumne River incremental flow requirements.⁴ Figure 5.17-4 is a snapshot of the computation.

	А	В	С	D	BV	BW	BX	BY	BZ	CA	CB	CC	CD	CE	CF	(G	CH		CI
1			1			SF La Grang	ge Respons	sibility Cor	mputation											
2	Unit Title		2																	
3	Parameter	Title	3																	
4																				
5	Acre-foot to	CFS conversio	n																	
6	divide by :	1.983471		- 1																
7																				
8																				
9																				
10						Approach ·	- SF 52% Re	sponsibilit	y Scenario											
11																				
12						Compute a			-											
13						Test scena		30% UF Fe		ne w/ 200/			SWRCB cor	nponent,	or existii	ng FERC	whiche	ver is gr	reater	·
14							213,897		213,897		0	-	1							
15											Total Diff									
16								Scenario			Alt									
	CYMonth			_		Exsiting	Exsiting	SWRCB	SWRCB		minus	51.7121								
18	Index	Date	Day	Days		FERC	FERC	30%	30%		FERC	SF Debit								
19	4070.40	40/4/4070	-	24		CFS	AF	CFS	AF		AF	AF								
20		10/1/1970		31		397	787	397 397	787		0									
21 22	1970.10	10/2/1970 10/3/1970		31 31		397 397	787 787	397	787 787		0									
22		10/3/19/0		31		397	787	397	787		0									
23		10/4/1970		31		397	787	397	787		0									
24		10/6/1970		31		397	787	397	787		0									
2.5	1570.10	10/0/15/0		31		357	707	337	787		0	0								

Figure 5.17-4. CCSF La Grange Release Responsibility.

⁴ The "shared responsibility" assumption is presented for the purpose of evaluating alternative operations. The assumption shall not be used as evidence in any proceeding relating to and shall not act as precedence for any allocation of Tuolumne River water between CCSF and the Districts for any purpose under the Fourth Agreement.

The 1995 FERC flow requirement and the scenario flow requirement are compared on a daily basis to identify the difference between the two schedules. The CCSF 52% responsibility factor is applied to the total difference, which values are then provided to the WaterBankRel and SFWaterBank worksheets for use if selected.

5.18 DailyCanalsCompute Worksheet

This worksheet (DailyCanalsCompute) performs the computation of the daily canal demands of the MID and TID. The computation of canal demands incorporate the PDAW and canal operations practices of the districts. This worksheet also incorporates the application of a Water Supply Factor (from worksheet DPWSF) that reduces canal diversions during limited water supply conditions. The results from this worksheet have been provided to the Model for the Test Case scenario.

5.18.1 Projected Demand for Applied Water and Don Pedro Water Supply Factor

This section of logic (Figure 5.18-1) incorporates two components of information into the computation of canal demands. The PDAW for each District is a pre-processed Model entry based on an estimate developed by the CDWR consumptive use model. The monthly time series for PDAW for the simulation period is modified prior to use in the computation to refine the demand to recognize the local districts' delivery records. The second component of information is the Don Pedro Water Supply Factor (WSF). This fraction is computed in worksheet DPWSF and reflects limited water supplies during periods of drought. The factor is used to reduce canal diversions, based on antecedent reservoir storage and forecasted inflow to Don Pedro Reservoir. There are several versions of the WSF available for use in the Model if user access is allowed. The "full demand" WSF will produce a canal demand/diversion equal to full needs, as if the available water supply is sufficient to meet the full canal demands. The WSF table included in the Model represents canal demands including reductions from full diversions, and manages water supplies to produce a reservoir operation similar to that occurred during the 1987-1992 drought.

	А	В	С	D	E	F	G	Н	I	J	К	L	М	N
1			1		District Ca	nal Divers	ion Compu	ted by Car	al Assump	tions and	Don Pedro	Water Sup	ply Factor	
2	Unit Title		2		Factor		Factor	Factor			AF	AF	AF	AF
3	Parameter	Title	3		DP WSF Fu	dl 👘	DP WSF	Dynamic \	NSF		MID Daily	TID Daily /	MID Daily	TID Daily I
4														
5	Acre-foot to	CFS conversio	n											
6	divide by :	1.983471			Pre-Proc	Pre-Proc	Active	Read	Read	Read				
7					Full	Base	Factor	from	from	from				
8					Factor	Factor	Used in	DPWSF	BU20:487	BV20:487				
9					1		Scenario							
10			<u>39-y</u>	<u>r Ave</u>							170,364	406,025	34,500	0
11				<u>Max</u>	1.0000	1.0000	1.0000	1.0000	36,100		1,822	4,116	110	0
12				Min	1.0000	0.6000	0.6000	0.6000	0		0	0	74	0
13							upply Facto	or	D	istrict Pro	jected Den	nand of Ap	plied Wate	er
14						10-4-2012								
15					DP	DP								
16					WS Factor	WS Factor		DP	MID	TID	MID	TID	MID	TID
17	Month				Full	Base	DP	WS Factor		PDAW	Daily	Daily	Daily	Daily
18	Index	Date	Day	Days	Demand	Case	WS Factor	Dynamic	Monthly	Monthly	PDAW	PDAW	M&I	M&I
19									AF	AF	AF	AF	AF	AF
20	1970.10		т	31	1.0000	1.0000	1.0000	1.0000	6,000	16,000	347	1,217	103	0
21	1970.10		F	31	1.0000	1.0000	1.0000	1.0000	6,000	16,000	270	626	103	
22	1970.10		S	31	1.0000	1.0000		1.0000	6,000	16,000			103	
23	1970.10		S	31	1.0000	1.0000		1.0000	6,000	16,000			103	
24	1970.10		М	31		1.0000		1.0000	-,	16,000			103	
25	1970.10	10/6/1970	т	31	1.0000	1.0000	1.0000	1.0000	6,000	16,000	315	769	103	0

Figure 5.18-1. Projected Demand for Applied Water and Don Pedro Water Supply Factor.

5.18.2 District Canal Demand Calculation

The sections of logic (Figure 5.18-2 and Figure 5.18-3) compute the components of District canal operations that factor into the daily canal demands/diversions of the Districts. These components build on top of the PDAW to develop a daily canal demand from Don Pedro Reservoir. The PDAW is represented as a daily varying demand based on recent historical daily diversion shapes while the canal operation parameters are generally represented by an even distribution pattern within each month.

_																					
	A	В	С	D	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE
1			1																		
_	Unit Title		2								AF		AF			AF		AF		CFS	
3	Parameter	Title	3		//&/	MID Turno	MID Nom	MID Turnc	MID Canal	MID Canal	MID Canal	MID Lwr C	MID Nom	MID Lwr C	MID M&I [MID Uppe	r Sys Loss	e MID La Gr	ange Dive	r MID La Gr	ange Divers
4																		-			
5	Acre-foot to (CFS conversio	m		Override f	or DailyCar	nals	(UI 2.10)	0	(1) on, use	e user-defii	ned table, (0) off, use	Base Case	canal diver	sion		Сара	city Check	2,000	cfs
6	divide by :	1.983471				0			0	(0) off, use	e UserInpu	t option (U	l 2.10), or	(2) use calc	ulated can	al diversio	n		Мах	1,257	
7					· ·	e UserInput	or Base		1	If using ca	lculated co	inal diversio	on, (1) Ba	ie, (2) Full D	emand, or	(3) Dynan	nic				
8				ļ	lf = 2, use	calculated															Pre-Proc
9																					Factor
10			<u>39-yı</u>	Ave		215,775	20,995	194,780	44,510	5,059	8,492	235,857	17,280	218,577	34,500	31,100	0	284,177			
11				<u>Max</u>		2,323	133	2,291	233	21	45	2,314	84	2,282	110	158	65	2,492			
12				Min		0	0	0	0	0	0	0	0	0	74	0	-97	' 81			
13					MID Canal	Demand C	alculation														
14															MID		MID				MID
15						MID					MID	MID			M&I Div	MID	Modesto		MID		7-day
16						Turnout	MID	MID	MID	MID	Canal	Lwr Canal		MID	frm	Upper	Lake	MID	Monthly	MID	3-yr Ave
17	Month				MID	w/o	Nom Prvt	Turnout	Canal	Canal	Intercpt	bfr MID	MID	Lwr Canal	Modesto	System	Daily	La Grange	Sum	La Grange	Day
18	Index	Date	Day	Days	Factor	Prvt Pmp	Pmp	Delivery	Op Spills	Losses	Flow	Nom Pmp	Nom Pmp	Diversion	Lake	Losses	Change	Diversion	Diversion	Diversion	Percent
19					%	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	CFS	% of Mo
20	1970.10	10/1/1970	Т	31	40	869	32	836	223	20	29	1,050	68	982	103	65	-97	7 1,053	20,952	531	0.06
21	1970.10	10/2/1970	F	31	40	676	32	643	223	20	29	857	68	789	103	65	-97	7 860	20,952	434	0.05
22	1970.10	10/3/1970	S	31	40	656	32	623	223	20	29	837	68	769	103	65	-97	840	20,952	424	0.04
23	1970.10	10/4/1970	S	31	40	734	32	701	223	20	29	915	68	847	103	65	-97	918	20,952	463	0.05
24	1970.10	10/5/1970	М	31	40	730	32	698	223	20	29	911	68	844	103	65	-97	915	20,952	461	0.05
25	1970.10	10/6/1970	Т	31	40	789	32	756	223	20	29	970	68	902	103	65	-97	7 973	20,952	. 491	0.05

Figure 5.18-2. District Canal Demand Components - MID.

	Α	В	С	D	AF	AG	AH	AI	LA	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1			1																		
2	Unit Title		2			AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF		AF		CFS	
3	Parameter	Title	3		ion	TID Turno	TID Nom F	TID Turno	TID Canal	MID Canal	TID Canal	TID Lwr C	TID Nom	F TID Lwr Ca	TID M&I D	TID Upper	Sys Losse:	TID La Grai	nge Divers	s TID La Gra	nge Diversi
4																					
5	Acre-foot to	CFS conversi	ion															Capa	city Check	3,400	cfs
6	divide by :	1.983471																	Max	2,404	
7																					
8																					Pre-Proc
9																					Factor
10			<u>39-yr</u>			532,337	31,298	501,039	46,871	36,555	0		· · · ·		0	52,200	0	· · · ·			
11				<u>Max</u>		4,535	206	4,455	243	150	0	4,815			0	290	250	4,768			
12				Min		0	0	0	0	0	0	0	0	0	0	32	-452	1			
13					TID Canal	Demand Ca	alculation														
14															TID						TID
15						TID					TID	TID			M&I Div	TID	Turlock		TID		7-day
16						Turnout	TID	TID	TID	TID	Canal	Lwr Cana		TID	frm	Upper	Lake	TID	Monthly	TID	3-yr Ave
17	Month				TID				Canal	Canal	Intercpt	bfr TID	TID	Lwr Canal	Turlock	System	Daily	La Grange		La Grange	
18	Index	Date	Day I	Days	Factor	Prvt Pmp	Pmp		Op Spills	Losses				Diversion	Lake	Losses	0			Diversion	
19	4070.40	40/4/4070			%	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	CFS	% of Mo
20		10/1/1970		31	40		77	2,966		145	0						-452		31,487		
21	1970.10 1970.10	10/2/1970		31	40		77	1,488	235	145	0				0		-452		31,487		0.04
		10/3/1970		31	40		77	1,332 2,398	235 235	145 145	0				0		-452		31,487		
22		10/4/1070	n c								0	2,779	171	2,608	0	65	-452	2,220	31,487		0.06
23	1970.10	10/4/1970		31	40		77				0		171	1 041	0	65	450	1 450	21 407		
	1970.10 1970.10		м	31 31 31	40 40 40		77	1,631 1,845	235	145 145	0	2,011			0		-452 -452		31,487	733	0.04

Figure 5.18-3. District Canal Demand Components - TID.

5.18.3 District Canal Operation Assumptions

The canal operation assumptions, e.g., regulating reservoir operation, seepage and losses and canal operation spills, are identified in this worksheet (entered into worksheet Control). These parameters are provided to the computations shown above. The canal operation assumptions for each District are shown Figure 5.18-4 and Figure 5.18-5.

Modesto Irrig	ation District										
			Canal	Canal	System			Modesto Res	Municipal		Modesto Res
	Turnout	Nominal	Operational	Operational	Losses		Nominal	and Upper	Delivery	Modesto Res	Target
	Delivery	Private GW	Spills	Spills	below	Intercepted	MID GW	Canal	from	Target	Storage
	Factor	Pumping	Critical	Non-crit	Modesto Res	Flows	Pumping	Losses/Div	Modesto Res	Storage	Change
Month	%	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF
January	35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	17.0	2.0
February	35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.3	18.0	1.0
March	65.0	1.0	1.0	3.0	0.6	0.9	1.0	2.0	2.7	/ 18.0	0.0
April	70.0	2.0	3.0	6.0	0.6	0.9	2.3	2.9	2.7	/ 19.0	1.0
May	85.0	3.0	4.0	6.5	0.6	1.2	2.3	3.9	3.0	20.0	1.0
June	85.0	4.0	3.5	6.5	0.6	1.0	2.3	4.3	3.2	20.0	0.0
July	77.5	4.0	3.5	6.5	0.6	1.0	2.6	4.9	3.3	21.0	1.0
August	70.0	4.0	4.9	7.0	0.6	1.4	2.4	4.9	3.3	22.0	1.0
September	65.0	2.0	5.0	7.0	0.6	1.2	2.3	4.2	3.3	20.0	-2.0
October	40.0	1.0	2.8	6.9	0.6	0.9	2.1	2.0	3.2	17.0	-3.0
November	30.0	0.0	2.0	2.0	0.1	0.0	0.0	2.0	2.7	15.0	-2.0
December	35.0	0.0	2.0	2.0	0.1	0.0	0.0	0.0	2.5	15.0	0.0
Total		21.0	35.7	57.4	5.4	8.5	17.3	31.1	34.5	i i i i i i i i i i i i i i i i i i i	

Figure 5.18-4. Canal Demand and Operation Components for MID.

Turlock Irriga	ation District										
			Canal	Canal	System			Turlock Lk	Other		Turlock Lk
	Turnout	Nominal	Operational	Operational	Losses		Nominal	and Upper	Delivery	Turlock Lk	Target
	Delivery	Private GW	Spills	Spills	below	Intercepted	TID GW	Canal	from	Target	Storage
	Factor	Pumping	Critical	Non-crit	Turlock Lk	Flows	Pumping	Losses	Turlock Lk	Storage	Change
Month	%	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF	TAF
January	30.0	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	18.0	5.0
February	30.0	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	25.0	7.0
March	65.0	1.2	3.0	3.0	4.5	0.0	4.1	1.0	0.0	30.0	5.0
April	57.5	2.4	5.1	6.3	4.5	0.0	8.0	6.6	0.0	30.0	0.0
May	85.0	3.6	4.6	6.7	4.5	0.0	10.3	7.7	0.0	32.0	2.0
June	92.5	5.2	4.2	6.7	4.5	0.0	12.4	8.2	0.0	32.0	0.0
July	72.5	6.4	4.2	6.7	4.5	0.0	14.6	8.7	0.0	32.0	0.0
August	62.5	6.2	4.0	7.3	4.5	0.0	13.3	9.0	0.0	30.0	-2.0
September	67.5	3.9	3.2	7.3	4.5	0.0	9.1	5.0	0.0	27.0	-3.0
October	40.0	2.4	2.3	7.3	4.5	0.0	5.3	2.0	0.0	13.0	-14.0
November	30.0	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	13.0	0.0
December	30.0	0.0	2.0	2.0	0.8	0.0	0.0	1.0	0.0	13.0	0.0
Total		31.3	38.6	59.3	39.2	0.0	77.1	52.2	0.0		

Figure 5.18-5. Canal Demand and Operation Components for TID.

5.19 DailyCanals Worksheet

This worksheet (DailyCanals) assembles the appropriate canal demands for the scenario. While worksheet DailyCanalsCompute is capable of providing several versions of canal demands, worksheet DailyCanals readies either those selected demands or alternatively defined demands for the Model.

5.19.1 Model (scenario) Canal Demands

The section of logic (Figure 5.19-1) shows two columns of data used by the Model (worksheet DonPedro) for canal diversions by MID and TID. The version of demand used is user specified. If using the worksheet UserInput interface, UI 2.10 selects whether pre-processed Test Case diversions are used or a user specified table of diversions are used. If access to worksheet DailyCanalsCompute is granted, a time series of canal diversions from worksheet DailyCanalsCompute is used.

	А	В	С	D	E	F	G	Н	1	J
1			1		District Ca	nal Divers	ion Read b	y Model		
2	Unit Title		2							
3	Parameter	Title	3							
4										
5	Acre-foot to	CFS conversio	n							
6	divide by :	1.983471				MID and T	ID Canal Di	iversion As	ssumption	
7					Read		Read			
8					by		by			
9					DP Model		DP Model		Sum	
10			<u>39-y</u>	r Ave	284,177		559,697		843,874	
11					Option (0)	is using Bo	ase Case Co	inal Divers	ion	
12					Option (1)	is using A	t from Use	rInput Can	al Diversio	n
13					Option>>	0	Switch 2.1	0 or Overr	ide	
14					Option (2)	is using Co	alculated C	anal Divers	sion	
15					Model	Model	Model	Model	Model	Model
16					MID	MID	TID	TID	Total	Total
17	Month				Canal	Canal	Canal	Canal	Canal	Canal
18	Index	Date	Day	Days	Diversion	Diversion	Diversion	Diversion	Diversion	Diversion
19					AF	CFS	AF	CFS	AF	CFS
20	1970.10	10/1/1970	Т	31	1,053	531	2,789	1,406	3,842	1,937
21	1970.10	10/2/1970	F	31	860	434	1,311	661	2,171	1,094
22	1970.10	10/3/1970	S	31	840	424	1,154	582	1,994	1,006
23	1970.10	10/4/1970	S	31	918	463	2,220	1,119	3,139	1,582
24	1970.10	10/5/1970	М	31	915	461	1,453	733	2,368	1,194
25	1970.10	10/6/1970	Т	31	973	491	1,668	841	2,641	1,332

Figure 5.19-1. District Canal Demands.

5.19.2 Test Case and Alternative Canal Diversions

This section of logic (Figure 5.19-2) provides the Model either a pre-processed time series of canal diversions (Test Case) or a time series of canal diversions that has been specified by the user in worksheet UserInput (UI 2.20 and UI 2.30) as monthly canal demands for the simulation period. A snapshot of the worksheet is shown below. This section of logic also parses the user specified monthly table of canal diversions into a daily diversion pattern based on the Test Case scenario's daily pattern of diversions.

	А	В	С	D	L	М	N	0	Р	Q	R	S	Т	U	V	W	х	Y	Z	AA
1			1																	
2	Unit Title		2																	
3	Parameter	Title	3																	
4																				
5	Acre-foot to	CFS conversio	n																	
6	divide by :	1.983471			Enter		Enter		Pre-Proces	sed	Alte	ernative Ca	anal Divers	ion	Enter		Enter		Derived from	n
7					Time		Time		as base sce	enario					Data in		Data in		UserInput	
8					Series		Series				Daily D	istribution	of User Su	pplied	Matrix		Matrix			
9					Here		Here		Sum		Month	ly Alternat	tive Distric	t Canal	AI66:AU103		AX66:BJ103		Sum	
10			<u>39-y</u>	r Ave	284,177		559,697		843,874			Dive	rsion		284,177		559,697		843,874	
11						1,257		2,404			Distrib	uted as Da	ily Percent	age of		1,257		2,404		
12						41		1			Monthly	Total Dist	rict Base D	iversion		41		1		
13					0	0	0	0	0	0				Option>>	1	1	1	1	1	1
14					Values of E	Base Case -	October 4,	2012							-					
15					Base	Base	Base	Base	Base	Base	Base	MID %	Base	TID %	Alt	Alt	Alt	Alt	Alt	Alt
16					MID	MID	TID	TID	Total	Total	MID Mon	Day of	TID Mon	Day of	MID	MID	TID	TID	Total	Total
17	Month				Canal	Canal	Canal	Canal	Canal	Canal	Canal	Month	Canal	Month	Canal	Canal	Canal	Canal	Canal	Canal
18	Index	Date	Day	Days	Diversion		Diversion		Diversion			Diversion	Diversion	Diversion		Diversion	Diversion	Diversion	Diversion	Diversion
19					AF	CFS	AF	CFS	AF	CFS	AF		AF		AF	CFS	AF	CFS	AF	CFS
20	1970.10	10/1/1970		31	1,053	531	2,789	1,406	3,842	1,937	20,952	0.05	31,487	0.09		531		1,406		
21	1970.10	10/2/1970		31	860	434	1,311	661	2,171	1,094	20,952	0.04	31,487	0.04		434		661		1,094
22	1970.10	10/3/1970		31	840	424	1,154	582	1,994	1,006	20,952	0.04	31,487	0.04				582		1,006
23	1970.10	10/4/1970		31	918	463	2,220	1,119	3,139	1,582	20,952	0.04	31,487	0.07		463		1,119		1,582
24	1970.10	10/5/1970		31	915	461	1,453	733	2,368	1,194	20,952	0.04	31,487	0.05		461		733		
25	1970.10	10/6/1970	Т	31	973	491	1,668	841	2,641	1,332	20,952	0.05	31,487	0.05	973	491	1,668	841	2,641	1,332

Figure 5.19-2. Test Case and Alternative Canal Diversions.

Adjacent to the above illustrated area of computations are several components of data assemblage (Figure 5.19-3). The monthly time series columns serve to summarize daily Test

Case diversions assumptions and provide user specified monthly diversions for daily parsing. The chronological matrices provide an alternative listing of the monthly data.

_		-																						
	A	В	C D	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1			1																					
	Unit Title		2																					
3	Parameter	Title	3																					
4																								
5	Acre-foot to	CFS conversio	n		Monthly T	ime Series D	Data																	
6	divide by :	1.983471				Monthly	Enter	Monthly	Enter															
7						from	Data in	from	Data in															
8						Daily	Matrix	Daily	Matrix															
9						Input	AI66:AU103	Input	AX66:BJ103															
10			39-yr Ave			Pre-Proc	UserInput	Pre-Proc	UserInput															
11																								
12					39-yr Ave	284,177	284,177	559,697	559,697															
13						1	2	1	2		Monthly N	latrix Time	Series Dat	a										
14						MID	MID	TID	TID															
15						Base	Alt	Base	Alt		User-defin	ed District	Canal Dive	ersions at A	166:AU103	and AX66:	BJ103							
16						Assumpt	Assumpt	Assumpt	Assumpt															
17	Month					Monthly	Monthly	Monthly	Monthly		Test Base	MID Canal	Assumptio	n - Read fr	om Time S	eries in Co	lumn AD							
18	Index	Date	Day Days			Volume	Volume	Volume	Volume		Acre-feet													
19			,,-		Yr-Month		AF	AF	AF		WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY
20	1970.10	10/1/1970	T 31		1970.10	20,952	20,952	31,487	31,487		1971	20,952	2,700	2,500	4,300	3,300	14,746	30,656	42,917	47,253	54,987	49,086	32,192	305,589
21	1970.10	10/2/1970	F 31		1970.11	2,700	2,700	1,000	1,000		1972	20,952	5,130	2,500	4,300	5,679	24,844	46,800	46,544	46,542	54,987	49,086	30,637	338,001
22		10/3/1970			1970.12		2,500	1,000	1,000		1973	20,952	2,700	2,500	4,300	3,300	14,746	23,737	45,374	47,016	54,987	49,086	32,658	301,356
23	1970.10	10/4/1970	S 31		1971.01	4,300	4,300	6,000	6,000		1974	20,952	2,700	2,500	4,300	3,300	14,746	18,115	42,917	45,239	49,733	49,086	32,658	286,246
24		10/5/1970			1971.02		3,300	8,000	8,000		1975	20,952	5,460	2,500	4,300	3,300	14,746	28,782	44,672	47,253	54,859	43,423	32,658	302,906
25	1970.10	10/6/1970	T 31	L	1971.03		14,746	42,220	42,220		1976	20,952	6,451	2,500	4,300	6,350	30,232	34,676	38,540	38,163	44,939	35,682	24,524	

Figure 5.19-3. Assemblage of Canal Diversions.

5.20 DPWSF Worksheet

This worksheet (DPSWF) computes the Don Pedro Water Supply Factor (WSF). The premise of the WSF factor is to reduce the amount of water diverted to the canals during years when lack of carryover storage at Don Pedro Reservoir becomes a concern. The modeling mechanism used to reduce canal diversions is a factor applied to the PDAW of the canal demand. This mechanism results in a reduction to the amount of water "turned out" to the customers while still recognizing the relatively constant efficiencies of canal operations.

The WSF is established by forecasting upcoming water supply, based on antecedent storage and anticipated inflow to Don Pedro Reservoir. The forecasting procedure begins in February and ends in April. The Factor Table is based on April forecast results. The February and March Forecasts act as adjustments to get to the April 1 state. The forecasts have the following protocol:

February Forecast (forecasting April 1 state): End of January storage + Feb-Jul UF - Feb-Jul US adjustment - Feb-Mar minimum river March Forecast (forecasting April 1 state): End of February storage + Mar-Jul UF - Mar-Jul US adjustment - Mar minimum river April Forecast: (final) End of March storage + Apr-Jul UF - Apr-July US adjustment

Pre-knowledge of unimpaired runoff for each forecast period is assumed, as well as knowledge of upcoming upstream impairment of the runoff. *The WSF factor / Don Pedro Storage + Inflow* relationship is developed through iterations of multi-year system operation simulations. The WSF depicts actions that may be implemented during times of drought, and the projected canal diversions and reservoir storage operation during drought periods. The factors and index triggers were developed reviewing reservoir storage levels that occurred during the 1987-1992 drought.

Figure 5.20-1 is a snapshot of the worksheet computation area.

_																											
	A	В	C D	E	F	G	H	1	J	К	L	M	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
1			1	Don Pedro	o Reservoir	Inflow For	ecast for D	iversion o	f Water Su																		
	Unit Title		2														g water si	ipply, base	ed on antece	dent							
3	Parameter	Title	3				Index Meth	nod - Activ	re Matrix		storage an	nd anticipa	ted inflow t	o Don Pee	dro Reserv	oir.											
4						M/T NDP	M/TID																				
	Acre-foot to					Stor + Infl	WS				Forecast b																
6	divide by :	1.983471				Index	Factor	+1	+1				ry storage +	Feb-July	UF - Feb-J	uly US adj -	Feb-Mar n	ninimum ri	iver								Read by
7						kaf	%				March For																Daily
8					Enter	0	0.6	1350	0.6					+ Mar-Jul	y UF - Mai	-July US adj	i - Mar mir	nimum rive	er -								Canals
9					Values	1350	0.6	1600	0.85		April Forec																Compute
10						1600	0.85	2000	0.85			EO-March	storage + A	pr-July U	F - Apr-Jul	y US adj											
11						2000	0.85	2001	1																		
12						2001	1	2300	1		Factor Tab	ile is April I	orecast ba	ed													
13						2300	1	9999	1		February a	nd March	Forecasts o	ict as adju	istments t	o estimate A	April 1 stat	e.									
14				L		9999	1																				
15										Unimpaire	d Flow - Ad	ctual Used				Upstream	Adjustem	nent to UF	Rive	er 👘	Storage	Forecast			WSF		
16						Model																	Lower	Upper	Lower	Upper	
17	Month					DP																	WSP	WSP	Break	Break	
18	Index	Date	Day Days	5	Month	Storage	Feb UF	Mar UF	Apr UF	May UF	Jun UF	Jul UF	F-Jul UF	M-Jul UF	A-Jul UF	F-Jul US	M-Jul US	A-Jul US	Feb River N	Aar River	Prev Stor	Forecast	Factor	Factor	Point	Point	WSF
19						AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	AF	Unit	Unit	Unit	Unit	Unit
20	1970.10	10/1/197	DT 31	L	10	1666767	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000
21	1970.10	10/2/197	D F 31	L I	10	1664567	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000
22	1970.10	10/3/197	D S 31	L	10	1662719	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000
23	1970.10	10/4/197	D S 31	L	10	1659892	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000
24	1970.10	10/5/197	D M 31	L	10	1656745	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000
25	1970.10	10/6/197	DT 31	L	10	1654119	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	2,500,000	1.0000	1.0000	2300	9999	1.0000

Figure 5.20-1. Don Pedro Water Supply Factor Computation.

5.21 CCSF Worksheet

This worksheet (CCSF) identifies, assembles and directs several elements of CCSF System operations, and provides input to other Model component worksheets.

5.21.1 San Joaquin Pipeline Diversions

The first section of logic concerns the identification of SJPL diversions. Figure 5.21-1 is a snapshot of this section. By user selection (UI 4.10) either pre-processed Test Case SJPL diversions are used, or a user specified table of monthly diversions for the simulation period are used. This section assembles the user selected version of diversions for use by the Model. These two versions of SJPL diversions are available for selection through worksheet UserInput. If access is granted, a third version of SJPL diversions is provided which revises Test Case diversions based on circumstances of the scenario that changes CCSF's operation. Procedures are described below the monthly diversion matrix describing how to employ this third version of SJPL diversions.

_			_	_																							
A	A	В	C D	E	F	G	н	1	J	K	L	M N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC
1			1		San Joaquin	Pipeline C	ontrol																				
-	Unit Title		2																								
3 /	Parameter	Title	3																								
4																											
5 /	Acre-foot to	CFS conversio	n																								
6 0	divide by :	1.983471			San Joaquin	Pipeline A	Assumption		Enter	Data frm	Data frm																
7									Time	Matrix	Matrix																
8					Used	Ву			Series	N66:Z103	N160:Z201		Additional	SJPL Optio	n Series												1
9					Mod	lel			Here	UserInput	UserInput		SJPL Series	switch from	n UserInpu	t:											
10					39-yr Ave	231,238	231,238		231,238	231,238	231,238		Option:	1	UI 4.10) (0) off, use	Base pipel	ine diversio	n, (1) on, u	iser-define	d monthly	table					
11					Daily T	ime Series	Data	N	Ionthly Tim	e Series Dat	а		· ·														
12					Enter SJPL Se	eries:			Option	Option	Option		User overic	le of optior	to use dy	namic:											
13					Option:	1			0	1	2		Option:	0	CCSF 1.00 (0) off, use	UserInput	option, or	(2) on, use	dynamic S	JPL based	on TSS trig	gers (adju	stment to E	lase diver	sions).	
14							SJPL		SJPL	SJPL	SJPL		· ·				Jsing dyna	mic option	. user mus	t update to	ble values	on worksh	eet CCSF (matix at Ce	IN 160).		
15							Base		Base	Alt Table	Dynamic																
16							Assumpt	Monthly	Assumpt		Assumpt																
17	Month				SJPL	SJPL	Daily	Time	Monthly	Monthly	Monthly	Prelim	Base SJPL D)iversion -	Read from	Time Serie	es in Colun	nn J (Porte	d from SF E	ase HHLSN	A Study)						
18	Index	Date	Day Day	s	Monthly	Daily	Volume	Series	Volume	Volume	Volume		Acre-feet														Jul-Jun
19					AF	AF	AF	Yr-Month	AF	AF	AF	Yr-Type	WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total WY	Del Yr
20	1970.10	10/1/1970	Т 3	1	19,027	614	614	1970.10	19,027	19,027	19,027	3	1971	19,027	11,969	6,660	6,660	6,015	25,782	24,950	25,782	24,950	29,778	29,778	23,937	235,286	269,198
21	1970.10	10/2/1970	F 3	1	19,027	614	614	1970.11	11,969	11,969	11,969	4	1972	21,881	16,572	12,368	17,124	15,467	25,782	25,779	25,782	24,950	29,778	29,778	24,950	270,211	220,123
22	1970.10	10/3/1970	S 3	1	19,027	614	614	1970.12	6,660	6,660	6,660	3	1973	21,881	14,731	12,368	6,660	6,015	6,660	16,572	25,782	24,950	29,778	29,778	23,937		
23	1970.10	10/4/1970	S 3	1	19,027	614	614	1971.01	6,660	6,660	6,660	2	1974	17,124	10,127	6,660	6,660	6,015	6,660	7,365	24,735	23,937	29,778	29,778	24,950		
24	1970.10	10/5/1970	M 3	1	19,027	614	614	1971.02	6,015	6,015	6,015	2	1975	17,124	0	0	25,782	11,171	6,660	10,127	24,735	23,937	29,778	29,778	24,950	204,042	267,234
25	1970.10	10/6/1970	Т 3	1	19,027	614	614	1971.03	25,782	25,782	25,782	6	1976	17,124	13,810	12,368	19,027	17,186	25,782	26,699	25,782	24,950	29,778	29,778	24,950	267,234	

Figure 5.21-1. CCSF San Joaquin Pipeline Diversions and Assemblage of Data.

5.21.2 CCSF System Storage and Action Levels

This section of logic (Figure 5.21-2) provides reporting and computational functions. The CCSF System action level computation analyzes scenario results concerning CCSF's reservoir storage and extrapolates that information into advised action levels within the CCSF System. Germane to

the FERC investigation is the potential effect that flow responsibility placed upon CCSF may have upon its water system and deliveries. The relationship between CCSF System reservoir storage and action levels (translated to increased delivery rationing) is incorporated into this worksheet. Upon changed conditions within a scenario (as compared to Test Case conditions), the change in action levels is identified. This change is also provided the SJPL diversion logic described above, and if allowed to be selected this worksheet will perform an adjustment to SJPL diversions.

	Α	В	С	D	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU
1			1			San Franci	so System	Storage ar	d Action Le	evels												
2	Unit Title		2			Level	AF	AF	AF	AF	AF	AF	AF	AF								
3	Parameter	Title	3			Ping Mode	Hetch Het	Lake Lloyo	Lake Elean	or Storage	2	Total HH S	Local Stor	Total Syste	Model Acti	ion Le	vel					
4																ſ		SF Sys	tem Action L	evel Compu	itation	
5	Acre-foot to	CFS conversi	on														Actions	C2a.30	C2a.30			
6	divide by :	1.983471														Ī	Level	BaseTrigger	BaseAction	ScenarioT	ScenarioA	
7							SF	System St	torage and	Action Lev	el Status -	Daily Time	Series Da	ta			0		0			
8													Linked to	Use Only			1	1,100,000	10	1,100,000	10	CCSF 2.00
9													SF Base	Last Day			2	1,100,000	10	1,100,000	10	
10													HHLSM	of Month			3	700,000	20	700,000	20	
11													Study	Plotting			Action Level	l Count		Base		<u>Scenario</u>
12												"	Hydrology				Level			Count		Count
13								Scenario	Model Resu	ults plus Si	Base HHL	SM Study L	ocal Syste	m Storage			0			33		33
14													Base	Total			1			0		0
15							Scenario	Scenario	Scenario	Scenario	Scenario	Scenario	Local	System			2			6		6
16						Base	Hetch	Lake	Lake	Water	Total	Total	Storage	Storage	Scenario		3			0		0
17	Month					Action	Hetchy	Lloyd	Eleanor	Bank	Upcountry	HH System	Incl GW	Incl GW	Action		Total			39		39
18	Index	Date	Day I	Days		Level	Storage	Storage	Storage	Balance	· · ·	Storage	EOM	EOM	Level							
19					_		AF	AF	AF	AF	AF	AF	AF	AF								
20	1970.10	10/1/1970		31		0	249,349	200,091	17,591	570,000		1,037,031		3,000,000	0		SF Action Le					
21	1970.10	10/2/1970		31		0	248,379	200,080	17,137	570,000		1,035,596		3,000,000	0				"Hydrology"			
22		10/3/1970		31		0	247,622	200,090	16,692	570,000		1,034,404		3,000,000	0				SF Base	SF Base	Scenario	Scenario
23		10/4/1970		31		0	247,032	199,278	15,878	570,000		1,032,189		3,000,000	0				June 30	Action	June 30	Action
24		10/5/1970		31		0	246,150	199,896	15,707	569,744		1,031,496		3,000,000	0				TSS	Level	TSS	Level
25	1970.10	10/6/1970	r r	31		0	245,360	199,781	15,206	570,000	460,347	1,030,347	211,136	3,000,000	0		EO-Jun	Year	AF	(0-3)	AF	(0-3)

Figure 5.21-2. CCSF System Storage and Action Levels.

5.21.3 Hetch Hetchy Reservoir Control

This section of logic (Figure 5.21-3) identifies several underlying operation constraints for Hetch Hetchy Reservoir. The minimum stream release below Hetch Hetchy Reservoir is computed in this section. Also identified in this section are reservoir storage targets and limits. This information is used in worksheet SFHetchHetchy for several operational constraints and objectives.

	А	В	С	D	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ
1			1			Hetch Hetc	hy Reservoir	Control									15,000	6,500	4,400
2	Unit Title		2			Schedule In	ndex - Accum	Inches or	Storage		Below Het	ch Hetchy	Requirem	ent - CFS		Discretion	ary Sched	ule - Acre-f	eet
3	Parameter	Title	3			Cal Mon	A (1)	B (2)	C (3)		Cal Mon	A (1)	B (2)	C (3)		Cal Mon	A (1)	B (2)	C (3)
4						1	8.80	6.1			1	50	40	35		1	0	0	0
5	Acre-foot to	CFS conversio	n			2	14	9.5			2	60	50	35		2	0	0	0
6	divide by :	1.983471				3	18.6	14.2			3	60	50	35		3	0	0	0
7						4	23	18			4	75	65	35		4	0	0	0
8						5	26.6	19.5			5	100	80	50		5	0	0	0
9						6	28.45	21.25			6	125	110	75		6	0	0	0
10						7	575,000	390,000			7	125	110	75		7	0	0	0
11						8	640,000	400,000			8	125	72.5	75		8	0	0	0
12											9	90	65	62.5		9	0	0	0
13											10	60	50	35		10	0	0	0
14							Sum of WY	Trigger			11	60	50	35		11	0	0	0
15						HH Accum	HH Inflow	Due to	Schedule	Schedule	12	50	40	35		12	0	0	0
16						Precip	То	Inflow	Due to	Due to							10	11	12
17	Month					beginning	Date	Jul-Dec	Inflow	Inflow	Jan	Feb	Mar	Apr	May	Jun	Oct	Nov	Dec
18	Index	Date	Day	Days		Oct 1	AF	AF	Jul	Aug - Dec	Schedule	Schedule	Schedule	Schedule	Schedule	Schedule			
19						Inches		709,538		1							CFS	CFS	CFS
20	1970.10	10/1/1970		31		0.73	157	709,538	0	1	0	0	0	0	0	0	60	-	0
21		10/2/1970		31		0.73	-6	709,538	0	1	0	0	0	0	0		60	0	0
22		10/3/1970		31		0.73	44	709,538	0	1	0	0	0	0	0		60	0	0
23		10/4/1970		31		0.73	262	709,538	0	1	0	0	0	0	0	-	60		0
24		10/5/1970		31		0.73	186	709,538	0	1	0	0	0	0	0	-	60	0	0
25	1970.10	10/6/1970	Т	31		0.73	204	709,538	0	1	0	0	0	0	0	0	60	0	0

	А	В	С	D	BK	BL	BM	BN	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY	BZ	CA	CB
1			1																			
2	Unit Title		2	Ĩ														AF	CFS	Target Sto	rage - Acre	-feet
3	Parameter	Title	3															Total Mini	Total Min		Target	Limit
4																				Cal Mon	EOM	EOM
5 /	Acre-foot to	CFS conversio	n															_		0	320000	
6 4	divide by :	1.983471													Month]		1	320,000	360,360
7															on					2	320,000	360,360
8															5					3	320,000	360,360
9															Does not	Does not	Lagged			4	320,000	360,360
10															include	include	by 1 day			5	360,360	360,360
11															offramp	Canyon	to avoid			6	360,360	360,360
12															of Discret	64 cfs	circular			7	360,360	360,360
13															"C" Sch		reference			8	360,360	360,360
14															due to					9	360,360	360,360
15															HH Stor	Min HH		w/ 64 cfs	w/64 cfs	10	330,000	360,360
16				Ī	1	2	3	4	5	6	7	8	9			Basic +	Canyon	Total	Total	11	320,000	360,360
17	Month				Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Basic	Discret	Discret	64 cfs	Min HH	Min HH	12	320,000	360,360
18	Index	Date	Day D	ays	Schedule	Schedule	Schedule	Schedule	Schedule		Day Chg	Target										
19					CFS	AF	AF	AF	AF	AF	CFS		Target	360,360								
20	1970.10	10/1/1970	Т	31	0	0	0	0	0	0	0	0	0	119	0	119		119	60		-979	359,381
21	1970.10	10/2/1970	F	31	0	0	0	0	0	0	0	0	0	119	0	119	0	119	60		-979	358,401
22	1970.10	10/3/1970	S	31	0	0	0	0	0	0	0	0	0	119	0	119	0	119	60		-979	357,422
23		10/4/1970		31	0	0	0	0	0	0	0	0	C	119	0	119	0	119	60		-979	356,443
24		10/5/1970		31	0	0	0	0	0	0	0	0	C	119	0	119	0	119	60		-979	355,463
25	1970.10	10/6/1970	Т	31	0	0	0	0	0	0	0	0	0	119	0	119	0	119	60		-979	354,484

Figure 5.21-3. Hetch Hetchy Reservoir Controls.

5.21.4 Lake Lloyd Control

This section of logic identifies several underlying operation constraints for Lake Lloyd. Figure 5.21-4 is a snapshot of this section. The minimum stream release below Lake Lloyd is computed in this section. Also identified in this section are reservoir storage targets and limits, and the target release objective for Holm Powerhouse. The maximum drawdown of Lake Lloyd due to supplemental releases is identified. This information is used in worksheet SFLloyd for several operational constraints and objectives.

		-	-	-								-										
	A	В	С	D	CE	CF	CG	CH	CI	CJ	CK	CL	CM	CN	CO	CP	CQ	CR	CS	СТ	CU	CV
1			1			Lake Lloyd												1				
2	Unit Title		2			Lloyd Targ		- Acre-fee		Lake Lloyd			f Combine	d Inflow		Blw Lake L	loyd - CFS		Holm Targ	et Release	s	
3	Parameter	Title	3				Soft Trgt	Hard Limit			Lloyd	Eleanor				Cal Mon	Req					
4						Cal Mon	EOM	EOM		Cal Mon	%	%	Note:			1	5		May (Merr	orial Day)	thru	
5	Acre-foot to	CFS conversion	n			0	238,000			1	53	47	Watershee	d		2	5		August (La	bor Day)		
6	divide by :	1.983471				1	238,000	273,300		2	52	48	proportion	าร		3	5		Holm Capa	icity	950) cfs
7						2	238,000	273,300		3	52	48	were deve	loped		4	5			Day	1,884	4 acre-feet
8						3	238,000	273,300		4	57	43	from the r	ecord		5	5		4-hou	rs per day	314	4 acre-feet
9						4	273,300	273,300		5	65	35	of runoff e	each basin		6	5					
10						5	273,300	273,300		6	72	28	basin prio	r to 1960.		7	15.5		Minimum	Lloyd Stor	age to Dra	w
11						6	273,300	273,300		7	72	28				8	15.5		for Water	Bank/Supp	- olementa	Release
12						7	268,000	273,300		8	56	44				9	15.5		Release:	45,000	acre-feet	CCSF 3.00
13						8	258,000	273,300		9	52	48				10	5					
14						9	248,000	273,300		10	69	31				11	5			May-Aug		
15						10	248,000	273.300		11	58	42				12	5			Min		
16						11	238,000	273,300		12	57	43								Holm		
17	Month					12	238,000			Total	Lloyd	Lloyd	Eleanor	Eleanor		Min Reg	Min Reg	1		Target		
18	Index	Date	Day	Davs	ł	Day Chg	Target			Inflow	Inflow	Inflow	Inflow	Inflow		Release	Release			Release		
19			,	,-		Target	248,000			CFS	CFS	AF	CFS	AF		CFS	AF		CFS	AF		
20	1970.10	10/1/1970	Т	31		0	248,000			81	56	111	25	50		5	10		0	0		
21	1970.10	10/2/1970		31		0	248,000			7	5	10				5	10		0	0		
22	1970.10	10/3/1970		31		0	248.000			22	15	30		14		5	10		0	0		
23	1970.10	10/4/1970		31		0	248,000			-578	-399	-791		-355		5	10		0	0		
24	1970.10	10/5/1970		31		0	248,000			466	322	638		287		5	10		0	0		
25		10/6/1970		31		0	248,000			-69	-48	-94	-21	-42		5	10		0	0		

Figure 5.21-4. Lake Lloyd Controls.

5.21.5 Lake Eleanor Control

This section of logic identifies several underlying operation constraints for Lake Eleanor. Figure 5.21-5 is a snapshot of this section. The minimum stream release below Lake Lloyd is computed in this section. Also identified in this section are reservoir storage targets and limits. This information is used in worksheet SFEleanor for several operational constraints and objectives.

	А	В	С	D	CW	СХ	СҮ	CZ	DA	DB	DC	DD
1			1									
2	Unit Title		2			Blw Lake E	leanor - Cl	-s		Eleanor Ta	arget Stora	ge - Acre-fe
3	Parameter	Title	3				w/Pump	w/o			Soft Trgt	Hard Limit
4						Cal Mon	Req	Req		Cal Mon	EOM	EOM
5	Acre-foot to	CFS conversio	n			1	5	5		0	18,250	
6	divide by :	1.983471				2	5	5		1	21,495	27,100
7						3	10	5		2	21,495	27,100
8						4	15	5		3	21,495	27,100
9						5	20	5		4	27,100	27,100
10						6	20	5		5	27,100	27,100
11						7	20	16		6	27,100	27,100
12						8	20	16		7	27,100	27,100
13						9	15	16		8	27,100	27,100
14						10	10	5		9	15,000	27,100
15						11	5	5		10	15,000	27,100
16						12	5	5		11	15,000	27,100
17	Month					Min Req	Min Req	Always		12	18,250	27,100
18	Index	Date	Day	Days		Release	Release	Assume		Day Chg	Target	
19						CFS	AF	Pump		Target	15,000	
20	1970.10	10/1/1970	т	31		10	20			0	15,000	
21	1970.10	10/2/1970	F	31		10	20			0	15,000	
22	1970.10	10/3/1970		31		10	20			0	15,000	
23	1970.10	10/4/1970		31		10	20			0	15,000	1 1
24	1970.10	10/5/1970	Μ	31		10	20			0	15,000	
25	1970.10	10/6/1970	Т	31		10	20			0	15,000	

Figure 5.21-5. Lake Eleanor Controls.

5.22 Hydrology Worksheet

This worksheet (Hydrology) identifies and assembles underlying watershed hydrologic data necessary for Model operation. Required elements of historical hydrology include inflows to CCSF System reservoirs and the unregulated inflow to Don Pedro Reservoir. Also necessary are certain Test Case conditions for the CCSF System, namely Test Case SJPL diversions and water delivery (action levels) associated with Test Case conditions. Also needed is the status of local watershed reservoir storage associated with the Test Case condition.

5.23 602020 Worksheet

This worksheet (602020) identifies and assembles underlying watershed hydrologic data necessary for Model operation. Included is the computation of the San Joaquin River Index. Also included are published results of CDWR runoff forecasts.

6.0 EXAMPLES OF MODEL USE

As part of the Model training during W&AR-02 Workshop #3, October 23, 2012, a set of example scenarios was provided, described and illustrated to attending Representative Participants. The following describes those examples.⁵

6.1 Example 1

Modify lower Tuolumne River flow requirements. Assume a 10 percent increase in current FERC requirements. Assume no CCSF responsibility for additional flow.

Advice: the workbook may be running in an auto-recalculation mode. To avoid a recalculation following an entry of each item the user may want to change the workbook settings to recalculate in the "manual" mode, and then apply a recalculation (F9) after multiple entries have been made. Also, worksheet Review is extremely processor time intensive. It is recommended that the worksheet be set in the "No" recalculation mode at all times except when necessary to review results.

Enter a study reference name in UserInput (UI 1.00), indicative of the scenario. In this example the study reference will be "Alt_10%".

An alternative flow requirement for the lower Tuolumne River is entered in worksheet UserInput, Section 1. The alternative flow requirement can be entered by two methods: 1) a daily time series (Column BM) reflective of a computation made external to this worksheet, or 2) a modified schedule entered as a year type schedule at UI 1.30.

Choose the table option. The current FERC requirements have been equated to the year type schedule format for UI 1.30, and are listed in the area to the right of the input matrix. One method of providing entry to the matrix is to write an equation for each cell of the matrix to increase the current schedule by 10 percent (e.g., the matrix cell could be represented as [Current FERC * 1.1]).

To employ the table, enter option (1) for UI 1.10 to use an alternative flow schedule. Also, enter option (1) for UI 1.20 to use the year type schedule. The month of "Apr" is selected for UI 1.40 to engage the flow schedule on an April through following year March flow year.

At this point Don Pedro Reservoir will have attempted to provide the additional flow requirement from reservoir storage and reoperation of releases which otherwise were released in excess of minimum releases in other periods. Worksheet Review is viewed to identify changes that have occurred and for warnings. Viewing the worksheet Review summary shows that river requirements have increased, and releases to the river have increased but by not as much. This circumstance indicates that some of the increases in requirements have been met with releases that were previously released in excess of minimum requirements and possibly from reservoir storage. The review summary also shows differences in reservoir minimum storage that occurred

⁵ The examples described in this document are examples only and not alternatives endorsed or supported by the Districts and CCSF.

in the simulation. A warning has also been indicated for CCSF Water Bank Account operations. Additional detail of the monthly results for the simulation and a comparison to the Test Base is found in the summary matrices. Differences between the two scenarios are can also be viewed in worksheets DSSAnyGroup and DSSMonthTable.

The scenario should be refined by eliminating the "negative Water Bank Account" warning. To remedy the circumstance the user could employ two methods: 1) the preferred daily adjustment method, or 2) a year type table approach, with or without a combination of daily adjustments. To use the preferred daily adjustment method option (1) is selected for UI 3.10, and the user is directed to worksheet WaterBankRel.

Upon selection of worksheet WaterBankRel, the user will see the same warning and the value of negative balance (Cell M14). Column T is provided to enter daily supplemental releases to remedy negative Water Bank Account Balances. The column will be populated with the time series last entered into the worksheet. By scrolling down the column the user will find previously entered values. In this example, entries began in 1992 which is associated with the Test Case scenario. It is seen that with the alternative flow requirement of this example the Water Bank Account Balance (Column M) is shown as a negative 161 acre-feet, and continues to be negative for numerous subsequent days. Under the Test Case scenario the Water Bank Account Balance remained at or above zero during this period as the result of the Test Case supplemental releases.

Advice: Set worksheet Review in the "No" recalculation mode prior to entering daily supplemental releases.

To remedy the new resultant negative Water Bank Account Balance an additional 161 acre-feet of supplemental release is added to the previously entered amount, and the "negatives" go away.

If the user is satisfied that this set of results represents an alternative simulation of future operations, the study is completed. The output worksheet could be saved as a unique result named Alt_10 or some other more explicit title.

6.2 Example 2

Same alternative flow requirements as Example 1; however, CCSF is to share in responsibility for the change in flow requirements.

Enter a study reference name in UserInput (UI 1.00), indicative of the scenario. In this instance the study reference will be "Alt_10%_Shared".

The alternative flow schedule entered at UI 1.30 remains the same. To invoke the CCSF responsibility logic the switch at UI 1.31 is set to option (1). The model will recalculate and provide a new set of results. Viewing worksheet Review shows that results for Don Pedro Reservoir operations remain the same as Example 1. However, the results for CCSF Water Bank Account operations have changed, and indicate that a negative balance again occurs (maximum of -43,000 acre-feet). However, review of other CCSF reservoir and diversion results will show no change from Example 1. This circumstance illustrates how invoking the CCSF responsibility

logic (UI 1.31) will affect the Water Bank Account Balance, but it alone will not change the Model's CCSF's operation. Review of the detailed monthly summary results for the Water Bank Account Balance (shown in the worksheet Review matrix beginning at Row 423) negative balances begin in the simulation in June 1990 and intermittently occur through December 1993.

The scenario should be refined by eliminating the "negative Water Bank Account" warning. To use the preferred daily adjustment method option (1) is selected for UI 3.10, and the user is directed to worksheet WaterBankRel.

Advice: Set worksheet Review in the "No" recalculation mode prior to entering daily supplemental releases.

Upon selection of worksheet WaterBankRel, the user will see the same warning and the value of negative balance (Cell M14). Column T will be used to remedy negative Water Bank Account Balances. The column is currently populated with the time series for Example 1. By scrolling down the column the user will find negative balances will begin to occur in June 1990 (-3,348 acre-feet on June 9). To remedy the new resultant negative Water Bank Account Balance an additional 3,348 acre-feet of supplemental release is entered in Column T. The worksheet will recalculate and show a revised balance for the day as zero. Subsequent balances will also change. The user will continue to make daily entries to eliminate the negative balances. Supplemental releases is required again beginning June 28, 1991, and ends during July. Supplemental releases are also required beginning March 1992. It is recommended that the previously entered supplemental releases for 1992 should result in the negative balance warning going away.

At this juncture of Model input and adjustment the results are reflective of an increase of 10 percent in minimum Tuolumne River requirements, with the Districts providing the flows from Don Pedro Reservoir. CCSF is responsible for a share of the differences in flow requirements and its Water Bank Account Balance is affected by that computed responsibility. CCSF operates its system as usual, and due to the affect at the Water Bank Account makes additional supplemental releases when needed to maintain a positive Water Bank Account Balance.

If the user accepts this set of results as an acceptable simulation of operations the study is completed. The output worksheet could be saved as a unique result named Alt_10_Shared.

6.3 Example 3

Modify lower Tuolumne River flow requirements. Assume a minimum flow regime that is the current FERC requirement, except the minimum flow requirement is 300 cfs. Assume no CCSF responsibility for additional flow.

Choose the table option for flow requirements. The existing FERC requirements have been equated to the year type schedule format for UI 1.30, and are listed in the area to the right of the input matrix. One method of providing entry to the matrix is to write an equation for each cell of

the matrix to provide the current FERC release but maintain at least a 300 cfs requirement (e.g., the matrix cell could be represented as [Max(Current FERC,300)].

At this point Don Pedro Reservoir will have attempted to provide the additional flow requirement from reservoir storage and reoperation of releases which otherwise were released in excess of minimum releases in other periods. Worksheet Review is viewed to identify changes that have occurred and for warnings. Viewing the worksheet Review summary shows that river requirements have increased, and releases to the river have increased but by not as much. This circumstance indicates that some of the increases in requirements have been met with releases that were previously released in excess of minimum requirements and possibly from reservoir storage. The review summary also shows differences in reservoir minimum storage that occurred in the simulation. A warning has also been indicated for CCSF Water Bank Account operations, and a warning indicates that Don Pedro Reservoir storage has been simulated below dead storage as a result of both the 1976-1977 and 1987-1992 droughts. Additional detail of the monthly results for the simulation and a comparison to the other scenarios is found in the summary matrices. Differences between two scenarios are also viewed in worksheets DSSAnyGroup and DSSMonthTable.

In the circumstance of this example where there is no shared responsibility with CCSF, prior to developing a remedy for the negative Water Bank Account Balance it is recommended that the dead storage warning be corrected. The user can either reduce the minimum flow requirements or the canal diversions, either resulting in retaining additional storage in Don Pedro Reservoir.

By choosing reduced canal diversions the user will use option (1) at UI 2.10, and enter an alternative monthly diversion for the Districts at UI 2.20 and UI 2.30. The simulated diversions for the Test Base are shown to the right of the matrices of UI 2.20 and UI 2.30.

The volume and pattern of canal reduction is entered at the user's discretion. For merely illustrative purposes this example assumes that WY 1976 diversions of both MID and TID are reduced from the already reduced values of the Test Case by an additional 10 percent. For the WY 1987-1992 period, it is assumed each District's already reduced diversions are additionally reduced by 5 percent.

The Model will recalculate the simulation and the results are viewed in worksheet Review. It is shown that the Don Pedro Reservoir dead pool storage warning has been remedied, with resultant storage after selective diversion reductions are now greater than 308,960 acre-feet. The warning for negative Water Bank Account Balances still occurs. To complete the study the negative balances need to be eliminated, which would require adjustment as described in Example 1 and Example 2.

6.4 Additional Example

Example 3 could be amended to include a CCSF responsibility for the incremental flow requirements. The process described in Example 2 would be executed by switching CCSF responsibility "on" and then providing supplemental releases to maintain a positive balance in the Water Bank Account. If CCSF storage in Lake Lloyd and Hetch Hetchy becomes depleted an

adjustment (reduction) to CCSF's SJPL would be required which requires a similar process as used to reduce the Districts' canal diversions.